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Stress-based Failure Criteria 
Although the topic in this section is closely related to the theory of plasticity, which is 
addressed in documents, a few popular design criteria are briefly presented here. They play 
an important role in identifying yielding in ductile metals. As a starting point, consider the 
case of a uniaxial stress state, in which sxx is the only non-zero stress component. In that 
case, the criterion to avoid failure is 

  (1) 

where fy is called the yield strength. This is the same strength that appears in the more 
elaborate criteria below. 

Tresca 
Tresca postulated that yielding occurs when the maximum shear stress exceeds a material-
specific threshold. In another document on this website it is shown, in the context of Mohr’s 
circle, the maximum shear stress equals half the difference between the largest and smallest 
principal stress. However, instead of formulating the criterion in terms of a shear yield 
stress it is formulated with the regular yield stress: 

  (2) 

which implies that the shear yield stress is half the axial yield stress. This criterion is shown 
as a dashed line in Figure 1 for the plane stress state. Notice that the out-of-plane stress is 
zero. For that reason, Figure 1 avoids the use of s1, s2, and s3 because, in the notation in 
this document, s1 is always the largest and s3 is always the smallest principal stress. In two 
of the quadrants in Figure 1 it is the out-of-plane stress that is s1 or s3.  

von Mises 
This yield criterion inherits the notion of a shear-stress-based yield criterion from Tresca. 
However, it takes as a starting point a reformulation of the stress tensor, split into a 
volumetric part and a deviatoric part: 

  (3) 

where  

  (4) 
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The deviatoric stress tensor represents distortion, while the volumetric part represents 
pressure. The derivation of von Mises’ yield criterion proceeds to carry out an eigenvalue 
analysis for the deviatoric stress tensor in the same way as the principal stresses were 
obtained for the ordinary stress tensor. However, instead of the notation Ii the deviatoric 
stress invariants are denoted Ji: 

  (5) 

where vertical bars identify the determinant and the deviatoric stress invariants are 

  (6) 

  (7) 

  (8) 

The von Mises criterion defines yielding in terms of the second deviatoric stress invariant. 
This is the basis for label “J2 plasticity” used in other documents on this website. It is 
postulated that yielding occurs when J2 exceeds a material constant. To synchronize with 
the yield stress, fy, for the uniaxial stress state, this constant is selected so that yielding is 
assumed to occur when 

  (9) 

Rearranged, the von Mises yield criterion is 

  (10) 

For the plane stress state,  

  (11) 

Substitution of Eq. (11) into Eq. (10) provides the von Mises yield criteron for plane stress 
conditions:  

  (12) 

This criterion is visualized by a solid line in Figure 1 along with the Tresca criterion. For 
the uniaxial case, J2 is given in Eq. (9) and the von Mises criterion boils down to |s | < fy. 
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Figure 1: Tresca and von Mises yield criteria for 2D stress state. 

Drucker-Prager 
This failure criterion is often employed in geotechnical engineering and extends the von 
Mises criterion to include the volumetric stress, in addition to the deviatoric stress. It is 
written in terms of the second deviatoric stress invariant, J2, and the first regular stress 
invariant, I1. Just like the von Mises criterion can be written as an equality as 

  (13) 

the Drucker-Prager the criterion is written 

  (14) 

where a and b are material constants.  J2 is defined earlier in this document and from the 
document on stress transformations,  

  (15) 

which means that the Drucker-Prager criterion reads, in the uniaxial case,  

  (16) 

Given the presence of two material constants, that borderline between safe and fail can be 
expressed on the tension side (positive stress) as 
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  (17) 

and on the compression side (negative stress) as 

  (18) 

Solving Eqs. (17) and (18) for a and b yields 

  (19) 

and 

  (20) 

If the yield stress is the same on the tension side and the compression side then 

  (21) 

and 

  (22) 
so that the criterion reverts to the von Mises criterion 

  (23) 

 
 

 

1
3
⋅ fy  (tension) = a + b ⋅ fy  (tension)

1
3
⋅ fy  (compression) = a − b ⋅ fy  (compression)

a = 2
3
⋅
fy  (tension) ⋅ fy  (compression)

fy  (tension) + fy  (compression)( )

b = 1
3
⋅
fy  (tension) − fy  (compression)

fy  (tension) + fy  (compression)( )

a =
fy
3

b = 0

σ = fy


