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Bouc-Wen Material Model 
This material model is characterized by a smooth transition from elastic to yielding 
material behaviour. It is also characterized by a set of material parameters that may lead 
to unphysical response, unless proper values are provided, so caution is required. The 
model was developed by Bouc (1971) and Wen (1976). Baber & Noori (1985) presented 
a version of the model that accommodates strength and stiffness degradation. I 
implemented that model in OpenSees, but the version that Andreas Schellenberg later 
implemented in OpenSees is a neat alternative formulated in terms of common stiffness 
and strength parameters, and is adopted in this document. In the Bouc-Wen model, the 
stress is written as the following sum of a linear part and a hysteretic part:  

 𝜎 = 𝛼 ∙ 𝐸 ∙ 𝜀 + (1 − 𝛼) ∙ 𝑓! ∙ 𝑧 (1) 

where a=fraction E that serves as second-slope stiffness, E=modulus of elasticity, 
e=strain, fy=yield stress, and z=hysteresis evolution variable. Under assumptions that are 
adopted shortly, z takes on values between –1 and 1. Figure 1 shows the implication of 
Eq. (1) in a stress-strain diagram, where the green line is the stress for a given strain. The 
figure illustrates the smooth transitions, and the asymptotes to which the stress converges 
for different e and z values. 

 
Figure 1: Illustration of the terms in the stress expression. 
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The hysteresis evolution variable is governed by the differential equation 

 �̇� =
1
𝜀!
∙ (𝜀̇ − 𝛾 ∙ 𝜀̇ ∙ |𝑧|" − 𝛽 ∙ |𝜀̇| ∙ 𝑧") (2) 

where ey=fy/E=yield strain, and g, b, and h are material parameters. In this context, ey is 
essentially a scaling factor that provides a transition from elastic to yielding within 
appropriate strain values. The specification of g and b in a manner such that the sum of 
their individual absolute values equal unity implies that z takes on values between –1 and 
1. That is because Eq. (2) says the rate of change of z approaches zero as z approaches –1 
or 1. The value g =b =0.5 is appropriate for a bilinear material with smooth transitions. 
Note that h is a positive integer; it governs the sharpness of the transitions shown by 
dashed lines in Figure 1. The higher value of h, the sharper the transition from elastic to 
yielding. As will be seen shortly, it is helpful to isolate the strain rate in Eq. (2), which 
yields the following revised version of Eq. (2): 

 �̇� =
1
𝜀!
∙ 21 − 2𝛾 + 𝛽 ∙ sign(𝜀̇ ∙ 𝑧)7 ∙ |𝑧|"7 ∙ 𝜀 ̇ (3) 

The signum function appears in order to accommodate the switch of the absolute value 
operator in the last term on the right-hand side of Eq. (2). The rewrite in Eq. (3) is helpful 
because 𝜀̇ = 𝑑𝜀 𝑑𝑡⁄ = Δ𝜀 Δ𝑡⁄ , and the strain increment, De, is always available to all 
material models in nonlinear analysis. Eq. (3), which governs the evolution of z, is now 
discretized using the Backward Euler scheme. This is done in order to obtain zn+1 from zn 
at increment n. For a generic differential equation �̇� = 𝑟2𝑧(𝑡)7 the algorithm reads 
zn+1=zn+Dt.r(zn+1). Given the right-hand-side of Eq. (3), and the fact that 𝜀̇ = Δ𝜀 Δ𝑡⁄ , the 
Backward Euler scheme reads, after recognizing that Dt cancels: 

 𝑧#$% = 𝑧# +
1
𝜀!
∙ 21 − 2𝛾 + 𝛽 ∙ sign(𝜀#̇$% ∙ 𝑧#)7 ∙ |𝑧#$%|"7 ∙ Δ𝜀#$% (4) 

As expected for the Backward Euler scheme, zn+1 appears on both sides of Eq. (4). For a 
moment, let zn+1 be labelled x, and consider the Newton algorithm xj+1=xj–f(xj)/f’(xj) for 
the generic root-finding problem f(x)=0, where f’ means df/dx. The function f is, from Eq. 
(4) 

 𝑓 = 𝑧#$% − 𝑧# − 21 − 2𝛾 + 𝛽 ∙ sign(Δ𝜀#$% ∙ 𝑧#)7 ∙ |𝑧#$%|"7 ∙
Δ𝜀#$%
𝜀!

 (5) 

where Den+1 takes the place of 𝜀#̇$% in the signum function because the sign is determined 
by Den+1. The derivative of f is 

 
𝑑𝑓

𝑑𝑧#$%
= 1 + 𝜂 ∙ sign(𝑧#$%) ∙ 2𝛾 + 𝛽 ∙ sign(Δ𝜀#$% ∙ 𝑧#)7 ∙ |𝑧#$%|"&%

Δ𝜀#$%
𝜀!

 (6) 

Once zn+1 is determined, the stress is obtained from Eq. (1).  
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Tangent 
In addition to the stress, the material algorithm must return the tangent stiffness. The 
tangent stiffness is used in the global Newton-Raphson scheme to compute the nonlinear 
structural response. The accuracy and consistency of the tangent stiffness is vital for the 
convergence rate of the Newton-Rapshon algorithm; however, it is also crucial for 
sensitivity analysis with the direct differentiation method. The starting point for the 
derivation of the tangent for the Bouc-Wen material model is the derivative of Eq. (1) 
with respect to the current strain: 

 𝑑𝜎#$%
𝑑𝜀#$%

= 𝛼 ∙ 𝐸 + (1 − 𝛼) ∙ 𝑓! ∙
𝑑𝑧#$%
𝑑𝜀#$%

 (7) 

When calculating the last factor, i.e., ∂zn+1/∂εn+1, the concept of a continuum tangent must 
be carefully distinguished from the algorithmically consistent tangent. It is the latter that 
should be implemented on the computer. For reference, the continuum tangent is first 
presented here, although it would be a mistake to employ it in the Newton-Raphson 
algorithm. Doing so would slow convergence and yield inaccurate response sensitivities 
from the direction differentiation method. To understand what the continuum tangent is, 
consider the decomposition of �̇� using the chain rule of differentiation in the following 
manner:  

 �̇� =
𝑑𝑧
𝑑𝑡 =

𝑑𝑧
𝑑𝜀
𝑑𝜀
𝑑𝑡 =

𝑑𝑧
𝑑𝜀 𝜀 ̇ (8) 

Comparing Eq. (8) with Eq. (3) shows that  

 
𝑑𝑧
𝑑𝜀 =

1
𝜀!
∙ 21 − 2𝛾 + 𝛽 ∙ sign(𝜀̇ ∙ 𝑧)7 ∙ |𝑧|"7 (9) 

Substituting Eq. (9) into Eq. (7) yields the continuum tangent. Conversely, the 
algorithmically consistent tangent is obtained by differentiating the previously presented 
equations that compute zn+1 with respect to the strain, and substituting the result, i.e., 
∂zn+1/∂εn+1, into Eq. (7). Two approaches, effectively leading to the same tangent value, 
are explored. First, recognize that the Newton-Raphson algorithm within the material 
calculates zn+1 using the iterative algorithm 

 (𝑧#$%)'$% = (𝑧#$%)' −
𝑓2(𝑧#$%)'7
𝑑𝑓2(𝑧#$%)'7

𝑑𝑧#$%

 (10) 

Any change in zn+1 after convergence would emanate solely from a change in the fraction 
in the last term of Eq. (10). That means the sought derivative is the derivative of that 
fraction with respect to the strain, i.e.,  

 𝑑𝑧#$%
𝑑𝜀#$%

= −
𝑑

𝑑𝜀#$%
>
𝑓(𝑧#$%)
𝑑𝑓(𝑧#$%)
𝑑𝑧#$%

? (11) 
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By adopting the notation f = f(zn+1) and f’ = df(zn+1)/dzn+1 the chain rule of differentiation 
applied to Eq. (11) yields 

 𝑑𝑧#$%
𝑑𝜀#$%

= −

⎝

⎜
⎛C

𝑑𝑓
𝑑𝜀#$%

D

𝑓′ −
𝑓

(𝑓′)( ∙ F
𝑑𝑓′
𝑑𝜀#$%

G

⎠

⎟
⎞

 (12) 

where 

 
𝑑𝑓

𝑑𝜀#$%
= −21 − 2𝛾 + 𝛽 ∙ sign(Δ𝜀#$% ∙ 𝑧#)7 ∙ |𝑧#$%|"7 ∙

1
𝜀!

 (13) 

and 

 
𝑑𝑓′
𝑑𝜀#$%

= 𝜂 ∙ sign(𝑧#$%) ∙ 2𝛾 + 𝛽 ∙ sign(Δ𝜀#$% ∙ 𝑧#)7 ∙ |𝑧#$%|"&%
1
𝜀!

 (14) 

Eq. (12) substituted into Eq. (7) is the sought algorithmically consistent tangent. Another 
approach is to employ Eq. (5) in conjunction with the condition f=0 to write 

 𝑧#$% = 𝑧# + 21 − 2𝛾 + 𝛽 ∙ sign(Δ𝜀#$% ∙ 𝑧#)7 ∙ |𝑧#$%|"7 ∙
𝜀#$% − 𝜀#

𝜀!
 (15) 

Differentiation of Eq. (15) with respect to the current strain yields 
𝑑𝑧#$%
𝑑𝜀#$%

= 2𝛾 + 𝛽 ∙ sign(Δ𝜀#$% ∙ 𝑧#)7 ∙ 𝜂 ∙ |𝑧#$%|"&% ∙ sign(𝑧#$%) ∙
𝑑𝑧#$%
𝑑𝜀#$%

∙
𝜀#$% − 𝜀#

𝜀!

+ 21 − 2𝛾 + 𝛽 ∙ sign(Δ𝜀#$% ∙ 𝑧#)7 ∙ |𝑧#$%|"7 ∙
1
𝜀!

 

(16) 

Solving Eq. (16) for ∂zn+1/∂εn+1 yields a value identical to that obtained from Eq. (11).  
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