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Stiffness Method 
In modern structural analysis the stiffness method is vital because it is the basis for 
computational analysis of structures. Its extension to problems beyond trusses and frames 
is called the “finite element method,” which is at the pinnacle of structural analysis 
software. In the same way as the flexibility method is the quintessential force method, the 
stiffness method is the quintessential displacement method. While the stiffness method 
has its biggest strength when implemented on the computer, it can also be employed in 
hand calculations. That is the focus of this document.  
In the stiffness method, equilibrium equations are established and solved for unknown 
joint displacements and rotations. The joints are often referred to as nodes, and the 
unknowns are called degrees of freedom (DOFs). The stiffness method is popular 
because no subjective choices are made when determining the DOFs. That is different 
with the selection of redundants in the flexibility method. In computer implementations 
of the stiffness method, the computer straightforwardly assigns a pre-defined number of 
DOFs to each node and establishes a linear system of equilibrium equations 
automatically. In hand calculations we often neglect axial deformations. That is harder 
for the computer to do, but it reduces the number of unknowns in hand calculations 
without significantly affecting the accuracy of the results. 

The key steps of the stiffness method are: 
1. Determine the DOFs of the structure, i.e., the unknown displacements and 

rotations, which are collected in the vector u 
2. Establish the stiffness matrix, K, which contains the stiffness coefficients 

explained below 
3. Establish the load vector, F, which contains the applied loads  
4. Solve the system of equilibrium equations, Ku=F, to obtain the unknown 

displacements and rotations  
5. Determine the element end forces from u and draw the section force diagrams 

 

 
Figure 1: A spring is a one-DOF problem. 
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Equilibrium Equations 
As an introduction to the stiffness method, first consider a simple problem with only one 
DOF. For that purpose, the problem of a spring with stiffness K shown in Figure 1 is 
addressed. Let F and u be the force and displacement along the DOF, respectively. As the 
spring is being pulled or compressed, a force equal to K.u develops in the spring. This 
force in the spring balances the applied force. Consequently, the equilibrium equation for 
this problem is 

  (1) 
where the stiffness coefficient, K, represents the force due to a unit displacement. Also 
observe that applied loads enter the right-hand side of Eq. (1) as positive when they act in 
the direction of the DOF. In other words, the applied load, F, in Figure 1 is positive 
because it acts in the direction of the DOF.  
Next, consider a 2-DOF problem, i.e., a problem with two DOFs, numbered 1 and 2. This 
means that two equilibrium equations are needed. The following two generic equilibrium 
equations are established by requiring equilibrium along the two DOFs: 

 K11 u1 + K12 u2 = F1 

 K21 u1 + K22 u2 = F2 (2) 
which can be written Kij uj = Fi, where Kij = force along DOF number i due to a unit 
displacement or rotation along DOF number j, uj = unknown displacement or rotation 
along DOF number j, and Fi = force along DOF number i due to external loads. The 
system of equilibrium equations in Eq. (2) is written equivalently in matrix notation as 

 Ku=F (3) 
where K=stiffness matrix, u=displacement vector, which contains the unknown 
displacements and rotations along the DOFs, and F=load vector.  

Establishing the Stiffness Matrix 
Once the DOFs of the structure are identified, in accordance with the document on 
degrees of indeterminacy, the stiffness matrix is established as follows: 

1. Sketch the displaced shape of the structure for a unit displacement or rotation 
along DOF number j, with all other DOFs clamped 

2. Determine the force along every DOF to maintain this displaced shape, i.e., Kij, 
which form column number j of the stiffness matrix 

3. Carry out Step 1 and 2 for all DOFs to establish all columns of the stiffness matrix 
4. Check that the final stiffness matrix is symmetric and that it has positive 

components on the diagonal  
The key challenge is Step 2, i.e., the determination of forces along the DOFs to maintain 
the displaced shape. For each DOF it is necessary to account for every force, including 
moments, from every member. Figure 2 provides stiffness-values for a few fundamental 
beam cases to assist this process. The stiffness values are derived from solving the 
differential equation, or equivalently by employing the slope-deflection equation, or the 
principle of virtual work. Each quantity in the auxiliary beam case is multiplied by the 

K ⋅u = F
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imposed displacement D or rotation q to obtain the actual value of the force or moment. 
Axial stiffness is omitted from Figure 2 because in the classical stiffness method it is 
straightforward and often sufficiently accurate to neglect axial deformations in frame 
members. Axial deformations are often orders of magnitude less than the bending 
(flexural) deformations because the axial stiffness is large compared to the bending 
stiffness for many frame members. Axial deformations are neglected simply by 
considering the members infinitely stiff in the axial direction, so that the associated DOFs 
of the structure are removed.  

 
Figure 2: Stiffness values for fundamental beam cases. 

Establishing the Load Vector 
The equilibrium equations Ku=F are conceptually and pedagogically appealing. 
However, an additional discussion is warranted on the inclusion of applied loads. Two 
cases must be considered:  

A. Point loads acting directly along a DOF 
B. Distributed loads or point loads acting somewhere along a structural member 

Case A is straightforwardly addressed by inserting the point load into the appropriate 
position of the load vector. If the load acts along the DOF, then it is positive. When 
addressing Case B, it is helpful to think of the stiffness method as a three-step process:  

1. Clamp all DOFs 
2. Establish equilibrium equations, including contributions from loads, for the 

clamped structure 
3. Release all DOFs at once, i.e., solve Ku=F for u.  

The fact that the equilibrium equations are established for the clamped structure means it 
is useful to think of “clamping forces” along the DOFs, caused by the applied loads. 
Example cases are provided in Figure 3. In these notes, the clamping forces are identified 
by a F-bar symbol, leading to the following expanded equilibrium equations:  
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 𝐊𝐮 + 𝐅% = 𝐅'  (4) 

This means that 𝐅'  contains point loads acting along the DOFs (Case A) while 𝐅% contains 
clamping forces from distributed loads, or point loads, acting somewhere along structural 
members (Case B). If we wish to write the equilibrium equations with all external loads 
on the right-hand side then Eq. (4) is reorganized to read 

 
𝐊𝐮 = 𝐅' − 𝐅%)*+
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= 𝐅 
(5) 

 

 
Figure 3: Clamping forces for a few beam cases. 

Determining Member Forces 
Upon establishing the stiffness matrix, K, and the load vector, F, the linear system of 
equilibrium equations Ku=F is solved to obtain u. The ultimate goal is to determine the 
internal forces in each member in order to draw the bending moment diagram, etc. One 
way to do that is to utilize the slope-deflection equation, derived in another document on 
this website:  

  (6) 

For each member, the applicable nodal displacements and rotations from u are inserted as 
qN, qF, and y in Eq. (6).  
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