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Poisson Processes 
Point Process 
The popular Poisson point process, often called the “Poisson process” for short, is a 
Bernoulli sequence in which trials are carried out at every time instant. I.e., the time 
between trials is zero and the number of trials is infinite. From here on, a trial that yields 
success will be called “occurrence.” Under the assumptions that 1) an occurrence is 
equally likely to occur at any time instant, 2) any occurrence is independent of what 
happened before, and 3) only one occurrence can happen at a particular time, the number 
of successes, x, in a time interval, T, is given by the Poisson distribution (Ang and Tang 
2007) 

  (1) 

where l is the rate of occurrences, i.e., the mean number of occurrences per unit time. 
Provided this basis, the Poisson process is referred to as a counting process; it counts 
occurrences in specific time intervals. The time between occurrences, t, has the 
exponential distribution: 

  (2) 

The mean time between occurrences is 1/ l and is habitually called the “return period.” 
Notice that realizations of a Poisson process is easily generated by generating outcomes 
of t, i.e., the random time between occurrences. It is also noted that the Poisson process 
has only one parameter, i.e., l. However, there are different ways of expressing this rate. 
For example, expressions like “2% in 50” appear in earthquake engineering as proxies for 
l. To understand their meaning, consider the probability of any non-zero number of 
occurrences during a time interval T, which is provided by Eq. (1):  

  (3) 

From Eq. (3) one can solve for the rate that yields a 2% probability of occurrence in a 50-
year time interval. Expressions like “1-in-50” are also encountered in building codes. 
This is a direct expression of the rate, i.e., l=1/50 and consequentially the return period is 
50 years. Table 1 exemplifies that the rate is not equal to the annual probability.  

Table 1: Return periods, rates, and annual probabilities. 

Return period, in 
years 

Rate, i.e., mean 
annual frequency 

Annual probability 
of occurrence 

1 1 1/1.582 
5 1/5 1/5.517 
10 1/10 1/10.508 
50 1/50 1/50.502 
100 1/100 1/100.501 
500 1/500 1/500.500 

p(x) = (λ ⋅T )
x

x!
e−λ⋅T

f (t) = λ ⋅e−λ⋅t

 p(1)+ p(2)+= 1− p(0) = 1− e−λ⋅T
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1,000 1/1,000 1/1000.500 
10,000 1/10,000 1/10,000.500 

 

From Annual to Multi-year Probability 
Suppose the annual probability of occurrence of some event is known. Denoting that 
probability by p1, the objective here is to determine pT, i.e., the probability of occurrence 
in T number of years. Observe that T is an integer in this subsection. Four equivalent 
alternatives are offered to achieve the objective.  
First, pT is determined from p1 via the determination of the annual rate of occurrence. 
Solving p1=1–e–l for the rate yields l= –ln(1–p1). That rate is then substituted into the 
expression pT =1–e–lT, which yields pT =1–eln(1–p1)T, which in turn simplifies to  
pT =1– (1– p1)T. 

Second, pT is determined from p1 via the expectation of the “system function,” f, for a 
series system of independent components.  The expectation of the system function for a 
series system, i.e., the failure probability for a series system of independent components, 
is directly pT =1– (1– p1)T. 

Third, pT is determined from p1 via the Poisson distribution, but without determining l. 
For the two probabilities, the Poisson distribution says: p1=1–e–l and pT =1–e–lT. The first 
of those expressions is rearranged to read e–l=1–p1 and the second expression is written 
pT =1–(el)T. Substituting the first into the second yields pT =1–(el)T=1– (1–p1)T. 
Fourth, pT is determined from p1 by considering each year as a trial of a Bernoulli 
sequence. The probability of occurrence of “success” in a Bernoulli sequence is 1–
p(x)=!𝑛𝑥$px(1–p)n–x. The following probability emerges for x=0 and n=T: 1–p(0)= 
1–1 p0(1–p)T–0=1– (1–p)T. 

 

Bayesian Inference  
There are several ways to estimate the occurrence rate l of a Poisson process. The 
simplest and least precise approach is to divide the number of observations in a time 
interval by the length of the interval. Another approach is to explore a fit between the 
probability distribution in Eq. (2) and the observed values of time between occurrences. 
A good fit would indicate that the exponential distribution is an appropriate probability 
distribution, and thus that the underlying model is indeed a Poisson process.  
Another option is Bayesian updating. In accordance with the general Bayesian principle, 
the distribution parameter l is then considered a random variable. A conjugate prior for l 
in Eq. (1) is the gamma distribution: 

  (4) 

Conjugate priors retain their distribution type as a posterior, and the parameters of the 
distributions are in this case updated by the formulas 

f (λ) = ν(νλ)k−1

Γ(k)
exp(−νλ)
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  (5) 

where double-prime and prime identifies posterior and prior parameters, respectively, 
while x is the number of observed occurrences in t.  

Pulse Process 
In contrast with a point process, a pulse process includes information about the duration 
and intensity of an occurrence. For this reason, each occurrence is referred to as a pulse. 
The variation of the intensity within an occurrence can take a variety of shapes, such as 
the ones shown in Figure 1 (Wen 1990). Each pulse process has only one of the pulse 
types shown in Figure 1, but the pulses within a realization of a process are usually 
different in duration and maximum intensity.  

 
Figure 1: Possible shapes of the “pulse” within an occurrence in a pulse process. 

The left-most pulse type in Figure 1 is assumed in the following, because it is most 
common in practical applications. This constant-intensity pulse type is also employed 
because it readily facilitates the modelling of loads that are “always on,” but with sudden 
changes in the load intensity. An example of such a process is shown in Figure 2; other 
details in this figure will be described shortly.  

 
Figure 2: Realization of a Poisson pulse process that is “always on.” 

While a Poisson point process is characterized by one parameter, the rate, three quantities 
are needed to define a Poisson pulse process. To understand this model it is useful to 
think of an underlying Poisson point process with rate denoted by n. Occurrences of this 
process are shown by solid circles in Figure 2. For each of these occurrences, the 
intensity value is “drawn” from the probability distribution at the right-hand side of 
Figure 2. This is because the intensity of an occurrence, denoted by S, is represented by a 

k '' = k '+ x
ν '' = ν '+ t

Intensity 

Time%

s(t) 

t 

s 

f(s) 
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random variable, which is usually continuous. A generic probability distribution for S is 
shown in the right-hand side of Figure 2. For this process, which is always on, every 
occurrence of the underlying Poisson point process is associated with a change in the 
intensity. A different case is shown in Figure 3, where the process is “intermittent.” In 
this case, the probability distribution for S has two components: 1) An ordinary PDF with 
area po, and 2) a lumped probability mass equal to 1–po at s=0. Therefore, when the 
intensity is drawn from this distribution then there is a probability equal to 1–po that the 
intensity is zero. As a result, several of the occurrences of the underlying processes in 
Figure 3 are associated with zero intensity. In contrast, for the process in Figure 2, which 
is always on, each occurrence of the underlying process is associated with an actual 
change in the intensity.  

 
Figure 3: Realization of an intermittent Poisson pulse process. 

In passing, it is noted that the PDF at the right-hand side of Figure 3, which is referred to 
as the “arbitrary point in time” (APIT) distribution, is written 

  (6) 

where d(s) is Dirac’s delta function and fY(s) is the probability distribution for the 
auxiliary random variable Y, which is the intensity of non-zero occurrences. As a result, 
the corresponding CDF is:  

  (7) 

where H(s) is the Heaviside function. Although the three quantities n, po, and f(s) 
represent a complete description of a Poisson pulse process, there are alternative 
representations that are often preferred. In particular, for intermittent processes it is 
common to employ the rate of occurrence of non-zero intensities. This is another Poisson 
point process, with rate denoted by l. Occurrences of this process are identified by 
slanted arrows in Figure 3. Because the probability is po of non-zero intensity at every 
occurrence of the underlying process with rate n, the rate of the new point process is: 

  (8) 

Furthermore, it is common to work with the mean duration of the pulses, µd. From 
knowledge of Poisson point processes, this quantity, which is equal to the mean time 
between occurrences of the underlying process with rate n, is: 

t 

s(t) s 

f(s) 
1-po 

po 

f (s) = 1− po( ) ⋅δ (s)+ po ⋅ fY (s)

F(s) = 1− po( ) ⋅H (s)+ po ⋅FY (s)

λ = po ⋅ν
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  (9) 

In summary, a Poisson pulse process is uniquely described by f(s) together with any 
pairing of the parameters n, l, po, and µd. A particularly telling parameter is po, which by 
combination of Eqs. (8) and (9) can be written: 
  (10) 

This quantity is tells how frequent the process is “on.” If lµd=1 then the process is 
always on. Conversely, if lµd is substantially smaller than unity then the pulses are either 
infrequent or brief, or both. 

Lifetime Maximum 
While the APIT distribution describes the intensity at any point in time, an equally 
important parameter in practical design is the “lifetime” maximum intensity of a pulse 
process. In the following, the random variable R denotes this quantity for a time period 
equal to T. By denoting the number of occurrences in T by x, the theorem of total 
probability yields the following CDF for R: 

  (11) 

Given independence in the occurrence of intensity changes, the first factor is obtained 
directly from the APIT distribution: 

  (12) 

because with x occurrences in the underlying Poisson process there are x+1 intensities to 
take into account, including both ends of the process. The second factor in Eq. (11) is 
obtained directly from the underlying Poisson process, with rate n: 

  (13) 

By pulling factors that are independent of x outside the summation, Eq. (11) becomes: 

  (14) 

It is next recognized that the summation is a series expansion of an exponential function: 

  (15) 

As a result, Eq. (11) condenses to: 

  (16) 

µd =
1
ν

po = λ ⋅µd

FR(r) = P(R ≤ r | x occurrences) ⋅P(x occurrences)
x=0

∞

∑

P(R ≤ r | x occurrences) = FS (r)( )x+1

P(x occurrences) = (ν ⋅T )x

x!
exp −ν ⋅T( )

FR(r) = FS (r) ⋅exp −ν ⋅T( ) ⋅ FS (r)( )x ⋅ (ν ⋅T )
x

x!x=0

∞

∑

(FS (r) ⋅ν ⋅T )
x

x!
= exp FS (r) ⋅ν ⋅T( )

x=0

∞

∑

FR(r) = FS (r) ⋅exp −ν ⋅T( ) ⋅exp FS (r) ⋅ν ⋅T( )
= FS (r) ⋅exp −ν ⋅T (1− FS (r))( )
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This probability distribution for the life-time maximum value is further refined by 
introducing the expression for the APIT distribution in Eq. (7), which according to the 
previous discussion can be written: 

  (17) 

By also replacing n by 1/µd in Eq. (16) according to Eq. (9) for uniformity of notation, as 
well as substituting Eq. (17), Eq. (16) reads: 

 (18) 

For r>0, i.e. for threshold above zero intensity the Heaviside function is unity, thus: 

  (19) 

Furthermore, for high thresholds, i.e., large values of r, the CDF FY(r) is close to unity, 
which leads to the following approximation (Wen 1990): 

  (20) 

This expression for the CDF for the lifetime maximum intensity is often employed in 
practice because many reliability applications deal with rare failure, i.e., high values of r. 
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FS (s) = 1− λ ⋅µd( ) ⋅H (s)+ λ ⋅µd ⋅FY (s)

  

FR(r) = FS (r) ⋅exp −T / µd (1− FS (r))( )
= (1− λµd )H (r)+ λµd FY (r)⎡⎣ ⎤⎦ ⋅exp − T

µd

⋅ 1− H (r)+ λµd H (r)− λµd FY (r)⎡⎣ ⎤⎦
⎛

⎝⎜
⎞

⎠⎟

  
FR(r) = 1− λµd + λµd FY (r)⎡⎣ ⎤⎦ ⋅exp −Tλ 1− FY (r)⎡⎣ ⎤⎦( )

  
FR(r) ≈ exp −Tλ 1− FY (r)⎡⎣ ⎤⎦( )


