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FOSM, FORM, SORM 
The structural reliability is the complement of the failure probability: 
  (1) 

The reliability problem, i.e., the problem of computing pf, has two ingredients: random 
variables that describe the uncertainty and one or more limit-state functions that define 
failure. If the problem has only one limit-state function then the problem is referred to as a 
component reliability problem. Otherwise, it is a system reliability problem. It is important 
to note that in modern reliability analysis the failure event is not necessarily structural 
collapse or some other event that is easily associated with the word failure.  Rather, limit-
state functions are defined to compute the probability of a range of events, such as the 
monetary loss exceeding some selected threshold.  

Limit-state Functions 
Since the early 80’s, when “allowable stress design” was replaced by “limit-state design,” 
structural engineers have become familiar with many “limit-states.” Limit-states related to 
strength are often called ultimate limit-states (ULS), while those related to deflections and 
vibrations are called serviceability limit-states (SLS). More generally, a limit-state function 
defines what the engineer considers to be failure. In other words, in reliability analysis the 
limit-state function defines the event for which the probability is sought. Denoting the 
limit-state function by g(x), where x is the vector of realizations of the random variables, 
the syntax is: 

  (2) 

One example of a limit-state function is  

  (3) 

where u0 is a threshold value and u is a response value that depends on the outcome of the 
random variables. A reliability analysis with this limit-state function yields and estimate of 
the probability that u exceeds the threshold u0.  
The same reliability problem can be posed by different but equivalent limit-state functions, 
which all satisfy Eq. (2). One example is the basic reliability problem; equivalent limit-
state functions for this problem include 

  (4) 

All these limit-state functions are negative when S exceeds R, otherwise they are positive. 
Therefore, because they all correctly identify the failure event, they are called “equivalent 
limit-state functions.” 

Reliability ≡ 1− pf

g(x) < 0:  Failure
g(x) > 0:  Safe
g(x) = 0:  The limit-state surface

g = u0 − u(x)

g = R − S     ⇔     g = 1− S
R

    ⇔     g = ln R
S

⎛
⎝⎜

⎞
⎠⎟
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The Basic Reliability Problem 
A simple but fundamental problem in reliability analysis is the “basic reliability problem,” 
which is defined by the limit-state function 

  (5) 

where R, from the French word résistance, is a random variable that represents resistance, 
i.e., capacity, and S, from the French word sollicitation, is a random variable that represents 
load, i.e., demand. It is observed that g is negative when S exceeds R, hence this limit-state 
function appropriately defines the failure event. Under the assumption that the resistance 
and load are statistically independent, in which case the joint PDF is f(r,s)=f(r).f(s), the 
problem specializes to  

  (6) 

 
Figure 1: Visualization of the basic reliability problem by individual PDFs. 

Eq. (6) shows that the failure probability for the basic reliability problem is not the 
overlapping area between the two marginal PDFs shown in Figure 1. Nor is it the 
overlapping area between the resistance-PDF and the load-CDF. Rather, the failure 
probability is the solution to an integral, i.e., the one in Eq. (6). To visualize this integral, 
it is more instructive to view the plane stretched by the two random variables, as shown in 
Figure 2.   

 
Figure 2: Visualization of the basic reliability problem in the random variable space. 
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Now consider the situation where R and S have the Normal probability distribution. In this 
case, g is also Normal because it is a linear function of R and S. In fact, the mean of g is: 

  (7) 

and the variance of g is: 

  (8) 

This implies that the failure probability is computed from the standard normal CDF, F:  

  (9) 

where the reliability index, b, is defined as 

  (10) 

This reliability index, in the context of the basic reliability problem, is interpreted in Figure 
3. It is observed that b is the number of standard deviations from the failure domain (grey 
shaded) to the mean. Clearly, the greater this distance is the greater the safety is. In other 
words, a high reliability index implies a low failure probability. This relationship is 
visualized in Figure 4, where b is plotted against pf in the range of typical b-values. The 
exact relationship in Eq. (9) is shown by a solid line, and the gross approximation pf=10–b 
is shown as a dashed line. The approximation is not used in practice because it is observed 
in Figure 4 that it is only a valid estimate around b=3. 

 
Figure 3: Normal probability distribution for the basic limit-state function. 
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Figure 4: Relationship between b and pf. 

The General Reliability Problem 
A generic reliability problem with only one limit-state function is referred to as the 
“component reliability problem,” which reads: 

  (11) 

where f(x) is the joint PDF for the random variables. Problems in which the joint state of 
more than one limit-state function defines failure are called “system reliability problems,” 
and they are addressed in another document. Eq. (11) shows that the component reliability 
problem amounts to integrating the probability density in the region of the x-space where 
the limit-state function is negative. All reliability methods address this problem. 
Unfortunately, it is impossible to solve the multi-fold integral in Eq. (11) analytically, 
except for a few special cases. However, methods like FORM, SORM, and sampling 
provides approximate solutions. Because it is possible to solve Eq. (11) analytically for 
only a few special cases a host of reliability methods have been developed to solve the 
component reliability problem in an approximate manner. Some of these are listed below 
and described in other documents.  

• The mean-value, first-order, second-moment (MVFOSM) method employs only 
second-moment information about the random variables together with a first-order 
approximation of the limit-state function about the mean of the random variables. This 
method is highly efficient, but it is associated with several disadvantages: 1) It may 
lead to different results for equivalent limit-state functions, referred to as the invariance 
problem; 2) The linearization of the limit-state function may lead to inaccuracies when 

pf = P(g ≤ 0) = ∫
g≤0
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the limit-state function is nonlinear; 3) Information about the distribution type of the 
random variables is ignored.  

• The first-order reliability method (FORM) remedies the invariance problem of 
MVFOSM and incorporates information about the distribution type of the random 
variables. These advantages come at a higher computational cost, accompanied by the 
possibility of non-convergence. FORM maintains the linearization of the limit-state 
function and may thus lead to inaccuracies when the limit-state function is nonlinear. 

• The second-order reliability method (SORM) is equivalent to FORM except that the 
limit-state function is approximated by a second-order function. To some extent this 
remedies possible inaccuracies when the limit-state function is nonlinear, but more 
computations are necessary compared with FORM. 

• Sampling methods evaluate the limit-state function at many realizations of the random 
variables and yield an approximate value of the failure probability. Several sampling 
methods are available, ranging from mean-centered Monte Carlo sampling to adaptive 
sampling schemes. A particularly appealing sampling method when FORM as been 
carried out is importance sampling. Based on information from the FORM analysis this 
approach provides an accurate and robust estimate of the failure probability with far 
fewer samples than, say, Monte Carlo sampling. 

• Response surface methods, including the neural network approach, are three-step 
approaches. First, the limit-state function is evaluated at many pre-selected realizations 
of the random variables. Next, some interpolation function, typically a second-order 
function or a neural network, is utilized to approximate the limit-state function. Finally, 
a reliability method, like FORM or sampling, is employed in conjunction with the 
approximate function to estimate the failure probability.  

Although it is somewhat artificial in practical use, several textbooks distinguish between 
Level I, II, III, and IV reliability methods: 

• Level I methods: In these methods only one value associated with each uncertain 
parameter enters the analysis. For example, design code equations that utilize one 
characteristic value for each parameter represent Level I methods. Level I methods do 
not yield a failure probability.  

• Level II methods: Two values for each uncertain parameter enter. Typically, the mean 
and standard deviation for each parameter, in addition to possible correlation between 
the parameters. According to this definition, second-moment methods are Level II 
methods. Unless the random variables are normally distributed, Level II methods do 
not yield a failure probability.  

• Level III methods: At this level the joint probability distribution for the parameters are 
available and a failure probability is produced. 

• Level IV methods: These go beyond Level III methods by including cost-benefit 
considerations that yield the target reliability. This approach is suitable for projects 
with limited precedence or dramatic failure consequences, such as offshore oil and gas 
installations and nuclear power plants.   
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MVFOSM 
Consider a situation in which the only information we have about the random variables is 
their second-moments, i.e., means, standard deviations, and correlation coefficients. Under 
these circumstances, analysis of functions provides the mean and standard deviation of the 
limit-state function, i.e., µg and sg. When those values are substituted into Eq. (10) we have 
the mean-value first-order second-moment reliability method, MVFOSM:  

  (12) 

The validity of b as a proxy for failure probability is understood from Eq. (9). The quantity 
b can also be interpreted by first imagining the PDF of the limit-state function. Unless g is 
a linear function of normal random variables, or some other simple case, this PDF cannot 
be established analytically. Nevertheless, this is a pedagogically useful thought-construct. 
Obviously, the PDF of g has mean µg and standard deviation sg. Furthermore, g=0 
separates the failure outcomes from the safe outcomes. By multiplying Eq. (12) by sg it 
becomes clear that b is the number of standard deviations from the mean to the failure 
region. The more standard deviations the failure domain is away from the mean the safer. 
In other words, the higher reliability index the smaller is the failure probability. 
Conversely, small values of the reliability index indicate that the failure domain is closer 
to the mean, which implies a higher failure probability. In addition to this explanation, a 
geometric interpretation of b in the space of random variables, which will be useful in the 
derivation of other reliability methods, is presented later in this document. 

Invariance Problem 
Formulas for the computation of µg and sg are known from the analysis of functions. If the 
limit-station function is linear then µg and sg are exact. If it is nonlinear then first-order 
approximations are available: 

  (13) 

  (14) 

It is the potential inaccuracy in these two equations that gives rise to the “invariance 
problem” of the MVFOSM method. It is called the invariance problem because the 
MVFOSM may provide different results for equivalent limit-state functions. Two limit-
state functions are equivalent if they share the surface g=0 in the space of random variables. 
Consider the basic reliability problem as an example. For the limit-state function g=R-S the 
MVFOSM reliability index is 

  (15) 

For the equivalent limit-state function g=ln(R/S) the solution is 

  (16) 

β =
µg

σ g

µg ≈ g(MX )

σ g ≈ ∇g(MX )
T Σ XX∇g(MX )
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In general, Eqs. (15) and (16) yield different results. For example, for 
µR=30, µS=20, sR=5, sS=10, and rRS=0.5 Eq. (15) yields b=1.15 while Eq. (16) yields 
b=0.92. This exemplifies the invariance problem. The root of the problem is that the 
linearization of the limit-state function is made at the mean. For a nonlinear limit-state 
functions this implies that the limit-state surface, i.e., g=0, is different for the linearized 
function and the actual function. It would be better to carry out the linearization somewhere 
at the limit-state surface g=0, which is shared by all equivalent limit-state functions. This 
solution gives rise to FORM and SORM, which are described in other documents.  

Geometric Interpretation of b 
To better understand the reliability index and to assist the development of FORM, a 
geometric interpretation of the second-moment reliability index is made. First consider a 
linear limit-state function of the form  

  (17) 

Furthermore, transform the function into the space of standard variables, i.e., transform X 
into a vector of variables with zero means and unit covariance matrix: 

  (18) 

Substitution of Eq. (18) into Eq. (17) and naming the limit-state function in the standard 
space G yields 

  (19) 

where c and d have been defined. Now carry out MVFOSM with this limit-state function: 

  (20) 

Compare this result with the geometry formula for the distance from a point to a plane. 
Indeed, the distance from Y=0 (the origin in the Y-space) to the limit-state plane G(Y)=0 
is: 

  (21) 

We conclude that the reliability index b is the distance from the origin to the limit-state 
surface in the space of standardized random variables. This shows an important appeal of 
the standard space: distances can be measured. Conversely, the original random variables 
usually have a variety of units and a distance in that space is not a meaningful concept.  

Normal vs. Lognormal 
The MVFOSM method yields a reliability index, but it does not provide a failure 
probability. This changes in the special case where the limit-state function is linear and the 
random variables are normally distributed. In this case, the probability distribution of the 
limit-state function is also normal. Furthermore, the second-moment analysis yields the 

g(X) = a + bTX

X =MX + DXLY

G(Y) = a + bTMX + b
TDXLY

= c + dTY

β =
µG

σG

=
c
dTd

=
c
d

Δ =
G(0)
∇G

=
c
d
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precise mean, µg, and standard deviation, sg. Consequently, the standard normal CDF is 
employed to obtain the failure probability: 

  (22) 

A note is here added in regards to lognormal random variables. In another document it is 
described that if Y is a normal random variable and 
  (23) 

then X is said to have the lognormal distribution. Now consider a linear limit-state function 
with lognormal random variables. Taking the left-most limit-state function in Eq. (4) as an 
example, and taking the natural logarithm of it, we essentially face the right-most limit-
state function in Eq. (4): 

  (24) 

where the normal random variables YR and YS are defined. This means that the solution in 
Eq. (15) applies, with means and standard deviations replaced by those of the underlying 
normal random variables. Expressions for those are given in the document on random 
variables.  
 

MVFOSM Importance Vector 
Ranking of the random variables according to relative importance often provides valuable 
insight. The most important random variables should be subjected to particular scrutiny, 
while unimportant random variables may be omitted from the analysis. An importance 
vector from MVFOSM, i.e., a vector with components that measure the relative importance 
the corresponding random variable is derived by considering the linearized limit-state 
function at the mean point: 

  (25) 

The variance of the linearized limit-state function is 

  (26) 

where n is the number of random variables. It is observed that the direct contribution of 
random variable xi to the total variance is . For this reason, the following vector 
is considered an importance vector in MVFOSM: 

  (27) 

The greater absolute value of  the greater importance of the corresponding 
random variable xi. The sign of wi also matters: 

pf = P(g ≤ 0) = Φ
0 − µg

σ g

⎛

⎝⎜
⎞

⎠⎟
= Φ(−β)

Y = ln(X)

g = ln(R)− ln(S) ≡ YR −YS

g(x) ≈ g(Mx )+∇g(Mx )
T ⋅ x −Mx( )

 

Var g(x)[ ]≈ ∇gT ⋅ Σxx ⋅∇g

= ∇g1σ 1( )2 + ∇g2σ 2( )2 ++ ∇gnσ n( )2 + ∇gi∇gjσ iσ jρij
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n

∑
i=1

n

∑
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• Positive wi means that xi acts like a load variable 
• Negative wi means that xi acts like a resistance variable 

FORM 
This material was first described to me in a course taught by my PhD thesis supervisor 
Professor Armen Der Kiureghian at the University of California at Berkeley. In 2005 he 
made an excellent description available in Chapter 14 of the CRC Engineering Design 
Reliability Handbook edited by Nikolaidis, Ghiocel and Singhal, published by the CRC 
Press in Boca Raton, Florida. FORM is an abbreviation of the first-order reliability method, 
which remedies the invariance problem of MVFOSM. The remedy is to approximate the 
limit-state function somewhere on the limit-state surface, i.e., at a point where g=0 instead 
of at the mean. The limit-state surface, which separates the failure domain from the safe 
domain, is shared by all equivalent limit-state functions.  

Properties of the Standard Normal Space 
Given the prologue, two questions appear: Which point on the limit-state surface to select, 
and thereafter: How to obtain the failure probability. The answer to both questions is found 
in the “standard normal space.” This is a space of uncorrelated standard normal random 
variables, in which realizations are denoted y and the joint PDF is 

  (28) 

The transformation from the original x-space to the standard normal y-space is adopted for 
two reasons: 
1. The joint PDF in the standard normal space is rotationally symmetric and it decays in 

the radial and tangential directions. Consequently, the point on the limit-state surface 
that is closest to the origin is the point in the failure domain with highest probability 
density. As a result, the point closest to the origin is an appealing point for 
approximating the limit-state function, because that is where a significant portion of 
the failure probability density is located.  

2. In the standard normal space it is possible to develop a formula for the probability 
content outside a hyper-plane, which is used in FORM, and outside a hyper-parabolid, 
which is used in SORM. The probability content outside a hyper-plane is 

  (29) 

where b is the distance from the origin to the closest point on the hyper-plane. 
The limit-state function is denoted g(x) in the original space, and it is denoted by capital 
letter G(y) in the standard normal space.  

The FORM Linearization 
The essence of FORM is to linearize the limit-state function G(y) at the design point, 
denoted y*, which is the point on the limit-state surface G(y)=0 that is closest to the origin. 
To establish a few key concepts, consider the linear Taylor series expansion around the 
design point:  

ϕ(y) = 1
(2π )n

⋅ exp −
1
2
yTy⎛

⎝⎜
⎞
⎠⎟

pf = Φ(−β)
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  (30) 

where the first term on the right-hand side is zero because y* is on the limit-state surface. 
In FORM analysis it is common to replace the gradient vector by its negative and 
normalized version, called the alpha-vector: 

  (31) 

In these notes all vectors are column vectors, and combination of Eq. (31) and Eq. (30) 
yields: 

  (32) 

a is a unit vector, thus the dot product between the parallel vectors a and y* is the length 
of y*. This is the distance from the origin to the design point, which is defined as the 
reliability index, b. Substitution into Eq. (32) yields 

  (33) 

which expresses the linearized limit-state function in FORM.  

Finding the Design Point 
From the previous it is understood that FORM consists of a transformation from the 
original space of random variables x to the standard normal space of random variables y, 
where the limit-state function is linearized at the point closest to the origin. This point is 
called the design point, or the most probable failure point. From above it is understood that 
it is the solution to the following optimization problem: 

  (34) 

where y* is the design point coordinates and G(y) is the limit-state function in the standard 
normal space. The value of G(y) is determined by transforming realizations of y into 
realizations of x and evaluating the original limit-state function g(x). In the context of 
optimization analysis it is common to write the problem in Eq. (34) in terms of the dot 
product of y with itself, multiplied by a convenience factor ½: 

  (35) 

Eqs. (34) and (35) are a nonlinear equality-constrained optimization problem.  The 
inequality-constrained version 

  (36) 

is an equivalent problem unless the limit-state function is negative at the origin in the 
standard normal space, which implies an unusually high failure probability. Upon solving 
the optimization problem the distance from the origin in the standard normal space to the 
point y* is the reliability index b: 

G(y) ≈ G(y*) +∇G(y*)T ⋅ (y − y*)

α = −
∇G(y)
∇G(y)

G ≈ − ∇G(y*) ⋅αT (y − y*) = ∇G(y*) ⋅(αTy* − αTy)

G ≈ ∇G(y*) (β − αTy)

y* = argmin  y     G(y) = 0{ }

y* = argmin  1
2
y 2     G(y) = 0⎧

⎨
⎩

⎫
⎬
⎭

y* = argmin y     G(y) ≤ 0{ }
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  (37) 

The generic search scheme to determine the design point, i.e., solving Eqs. (34), (35), or 
(36), is 

  (38) 

where m is the iteration counter, sm is the step size at the mth iteration, and dm is the search 
direction at the mth iteration. Typically, but not necessarily, the search starts at the origin 
of the standard normal space, and algorithms to determine sm and dm are described shortly.  

Convergence Criteria 
Like all other optimization algorithms, only local convergence can be generally proven. 
Two convergence criteria must be satisfied. First, the trial point must be close to the limit-
state surface: 

   (39) 

where G0 is a scaling factor that is usually selected as the start-value of the limit-state 
function and e1 is a threshold that is usually selected around 10-3. Second, the trial point is 
required to be the point on the limit-state surface that is closest to the origin. For that to be 
the case it must be a gradient projection point, i.e., the gradient of the limit-state function 
at the trial point should point at the origin. This is the case if ym is parallel to the gradient 
vector. The length of the y-vector in the direction of the a-vector defined in Eq. (31) is the 
dot product aTy. As shown in Figure 5, the difference between the vector (aTy)a  and y is 
therefore a reasonable convergence criterion: 

  (40) 

where e2 is a threshold that is usually selected around 10-3.  

 
Figure 5: Second convergence criterion in FORM. 
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Because the deviation between the two vectors in Eq. (40) is measured as a distance instead 
of an angle, the convergence criterion gets stricter with increasing distance from the origin. 
This is a problem that is remedied either by a scaling, for example by the norm of y: 

  (41) 

or by comparing angles instead. Fundamental vector geometry gives 

  (42) 

because a is a unit vector. Consequently, an angle-based second convergence criterion is 

  (43) 

With reference to optimization theory, this convergence criterion represents a Karush-
Kuhn-Tucker optimality condition. To understand this, consider the Lagrangian function 
for the optimization problem in Eq. (34): 

  (44) 

where the factor ½ is insignificant except for convenience of later expressions. The first 
optimality condition is that G(y)=0. The second requires the gradient of the Lagrangian 
function to be zero: 

  (45) 

Consider the possible solution 

  (46) 

Substitution into Eq. (45) yields  

  (47) 

Indeed, this equation is satisfied if the trial point is a gradient projection point, in which 
case y is parallel to the gradient vector and Eq. (47) is the sum of two vectors with opposite 
directions and unit length. It is observed that Eq. (47) is equivalent to Eq. (43) when Eq. 
(47) is multiplied by  and adopting Eq. (31). Hence, Eq. (43) represents a Karush-
Kuhn-Tucker optimality condition and is appropriate as a convergence criterion. 

iHLRF Algorithm 
This state-of-the-art algorithm for finding the design point has evolved from its conception 
together with FORM in the 1970s. Hasover and Lind initiated the development in 1974 and 
Rackwitz and Fiessler extended it in 1978. Further improvements were made in the 1990s 
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⎠⎟
αm ≤ e2

cos(θ) = αTy
y

1− αm
T ym
ym

≤ e2

L(y) = 1
2
y 2 + λ ⋅G(y)

∇L(y) = y + λ ⋅∇G(y) = 0
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by Der Kiureghian and students to arrive at the algorithm’s current name and form. For 
pedagogical purposes, start by considering the linearized limit-state surface at a point ym in 
the standard normal space, similar to the linearization in Eq. (30):  

  (48) 

The limit-state surface, which in this case is a hyper-plane, is expressed by setting Eq. (48) 
equal to zero: 

  (49) 

According to fundamental geometry, the distance from the origin to the closest point on 
the limit-state surface equals the function value at the origin divided by the norm of the 
gradient vector: 

  (50) 

If the actual limit-state function was linear then Eq. (50) would represent the sought 
distance, i.e., the reliability index b, and the design point coordinates would be obtained 
by multiplying the distance by the negative normalized gradient vector, called the alpha-
vector: 

  (51) 

For non-linear limit state functions this is not the final solution, but Eq. (51) is nevertheless 
useful. It is employed as a trial point at which a new linearization is performed. In other 
words, Eq. (51) is a recursive algorithm. Combining Eqs. (50) and (51) yields: 

  (52) 

Furthermore, a search algorithm of the form in Eq. (38) is obtained by extracting the search 
direction vector dm from Eq. (52): 

  (53) 

The step size sm in Eq. (38) is unity by default, which characterizes the original HLRF 
algorithm and gives rise to potential convergence problems. This issue is analogue to the 
potential convergence problems in the elementary Newton root-finding algorithm. The unit 
step size may be far too long under certain circumstances. Rather, in accordance with 
optimization theory the line search problem of selecting a step size is recognized as an 
optimization problem in itself. However, rather than carry out this new optimization 
analysis the Armijo rule is adopted: 

  (54) 

G(y) ≈ G(ym ) +∇G(ym )
T ⋅ (y − ym )

G(ym ) +∇G(ym )
T ⋅ (y − ym ) = 0

Δ = G(0)
∇G(ym )

= G(ym )−∇G(ym )
T ⋅ym

∇G(ym )
= G(ym )

∇G(ym )
+ αT ⋅ym

ym+1 = −Δ ⋅
∇G(ym )
∇G(ym )

≡ Δ ⋅α

ym+1 =
G(ym )
∇G(ym )

+ αT ⋅ym
⎛

⎝⎜
⎞

⎠⎟
α

dm = ym+1 − ym =
G(ym )
∇G(ym )

+ αT ⋅ ym
⎛

⎝⎜
⎞

⎠⎟
α − ym

sm = bk
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where 0<b<1 is a constant usually equal to ½ and k is an integer that is sequentially 
increased from zero until the step size is accepted. Effectively, for b=½, Armijo’s rule cuts 
the step size in half until a step size is accepted. The criterion for accepting a step size is 
expressed in terms of a merit function. The step size must satisfy 

  (55) 

where a>0 is typically set equal to ½ and the merit function reads 

  (56) 

with gradient 

  (57) 

The parameter c must satisfy the condition 

  (58) 

for the search direction to be a descent direction of the merit function. It may be 
implemented as  

  (59) 

where g>1 and h≥0 with typical values g=2 and h=10 . Other algorithms are available to 
solve Eqs. (34), (35), and (36). They include the Gradient Projection algorithm, the Polak-
He algorithm, as well as a sequential quadratic programming (SQP) approach.  

Gradient Computations 
The gradient of the limit-state function, i.e.,  

  (60) 

is a vector that appear frequently in the previous derivations. In particular, this gradient 
vector is an important ingredient in the iHLRF design point search algorithm. The iHLRF 
algorithm is therefore called a gradient-based algorithm, along with many other 
optimization schemes. The evaluation of Eq. (60) requires attention because the limit-state 
function is not expressed in the standard normal y-space but in the original x-space. 
Furthermore, in modern reliability analysis the limit-state function is often expressed in 
terms of responses u from a numerical analysis like the finite element method. Under these 
circumstances the gradient vector in Eq. (60) is evaluated by the chain rule of 
differentiation: 

  (61) 

The following comments are provided about each factor: 

m(ym+1) − m(ym ) ≤ a ⋅ sm ⋅ ∇m(ym )
T dm( )

m(y) = 1
2
⋅ y 2 + c ⋅ G(y)

∇m(y) = y + c ⋅∇G(y) ⋅ sgn G(y)( )

c ≥
y

∇G(y)

c = γ ⋅
ym

∇G(ym )
+η

∇G(y) ≡ ∂G(y)
∂y

∂G
∂y

=
∂g
∂u

∂u
∂x

∂x
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§  is usually trivial because the limit-state function is some algebraic 
expression in terms of the responses u. 

§  is a vector of response sensitivities from the numerical analysis like the 
finite element method. Its computation is a subject in the computational stiffness 
method. 

§  is the inverse of the Jacobian matrix that is computed in the document on 
probability transformations. 

The FORM Analysis Procedure 
In light of the previous derivations, the FORM algorithm is summarized as follows: 

1. Set m=1 
2. Select a starting point in the standard normal space: ym 
3. Transform into the original space: ym à xm 
4. Evaluate the limit-state function G(ym)=g(xm) 
5. Evaluate the gradient of the limit-state function according to Eq. (61) 
6. Set the scaling factor for the first convergence criterion: G0=G(ym) 
7. Check convergence according to Eqs. (39) and (43) 
8. If convergence is not achieved, compute ym+1 according to Eq. (38) with search 

direction and step size defined by, e.g., the iHLRF algorithm 
9. Repeat from Step 3 but skip Step 6 

Upon converging, compute the reliability index according to Eq. (37) and compute the 
failure probability from Eq. (29).  

Suitability of the FORM Linearization 
FORM is a powerful and efficient reliability method that provides physical insight in 
addition to the probability estimate. It works well for a host of practical problems. 
However, the analyst should be aware of several potential pitfalls: 
§ FORM is based on the assumption that the limit-state function is not highly nonlinear, 

particularly in the vicinity of the design point. This is not a problem with most practical 
problems rooted in structural analysis, but caution must be exercised, especially in 
structural dynamics problems.  

§ When gradient-based design point search algorithms are applied the limit-state function 
must be continuously differentiable, i.e., the components of the gradient vector must 
be continuous. This requirement is violated when max and if statements are 
incorporated in the definition of the limit-state function. Gradient discontinuities also 
appear if the limit-state function is defined in terms of responses from a structural 
analysis that is associated with sudden yielding of elements. 

§ It has been contended that the failure probability density in the vicinity of the design 
point is dispersed for high-dimensional problems, i.e., when the number of random 
variables is in the hundreds or thousands. In that case it is claimed that nonlinearity in 
the limit-state function will have a significant impact on the FORM estimate of the 
failure probability because little probability density exist near the design point. 
However, this concern may be overstated for two reasons. First, the number of random 
variables must be significant for this problem to appear. Second and more importantly, 
it is highly unlikely that the nonlinearity in all axis direction is significant and 

∂g ∂u

∂u ∂x

∂x ∂y
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simultaneously convex or concave, which is the circumstance under which the FORM 
estimate would deteriorate.  

Reliability Sensitivities with respect to Constants 
Derivatives of pf and b with respect to distribution parameters or other parameters of the 
limit-state function are useful for several reasons. They are employed in “importance 
measures” that rank the relative importance of different parameters, and they are essential 
in reliability-based optimization algorithms that are gradient-based. The problem of 
computing derivatives with respect to parameters of the limit-state function is first 
addressed. For example, we may seek the derivative of the threshold u0 in the limit-state 
function 

  (62) 

A reliability analysis with this limit-state function essentially yields a point on the 
complementary cumulative distribution function of the response u, and the derivative 
dpf/du0, with a minus sign in front, is therefore a point on the probability density function 
of u. Typically, u is computed with an array of models and many random variables 
collected in x. A similar example is differentiation carried out with respect to parameter(s) 
buried inside the computation of u, which is also covered by the following derivations. 
First, it is recognized that computation of db/du0 immediately gives dpf/du0 because 

  (63) 

Thus 

  (64) 

Next, the problem of computing db/du0 is addressed by recognizing that the reliability 
index is directly related to the design point coordinates y* and applying the chain rule of 
differentiation: 

  (65) 

The reliability index can be written as b=aTy*, hence the first factor reads: 

  (66) 

Thus, we temporarily arrive at the following expression for the derivative of the reliability 
index: 

  (67) 

To proceed it is necessary to take a detour. In particular, differentiate the limit-state 
function, G, at the design point, where G=0: 

g = u0 − u(x)

pf = Φ(−β )

∂pf
∂u0

= ∂
∂u0

Φ(−β ) = ∂β
∂u0

∂
∂β

Φ(−β ) = − ∂β
∂u0

⋅ϕ(β )

∂β
∂u0

=
∂β
∂y*

T ∂y*

∂u0

∂β
∂y*

= α

∂β
∂u0

= −
∇GT

∇G
∂y*

∂u0
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  (68) 

Then solve for the conditional derivative: 

  (69) 

Now compare Eqs. (67) and (69). The right-hand sides of those two equations are equal, 
barring the norm of the gradient. Hence, it is concluded that the sought derivative of the 
reliability index is actually almost equal to the derivative of the limit-state function of the 
design point. In fact: 

  (70) 

Reliability Sensitivities with respect to Distribution Parameters 
Another problem related to reliability sensitivities is to compute the derivative of pf and b 
with respect to the mean and standard derivation of the random variables. Once again it is 
understood that db/dµ and db/ds is what we seek, where µ and s are the mean and standard 
deviation of a random variable, respectively, because dpf/dµ and dpf/ds follow directly 
from Eq. (64). It turns out that  

  (71) 

where q is the distribution parameter and the last factor in the right-hand side is essentially 
the derivative of the probability transformation at the design point. 

FORM Importance Vectors 
Importance vectors are related to reliability sensitivity measures, but they serve a different 
purpose. Specifically, importance vectors are intended to reveal the relative “importance” 
of different parameters. The derivatives in the previous section cannot generally be utilized 
for that purpose, because the derivatives have different units, depending on the units of the 
intervening random variables. Four importance vectors are available in FORM. First, 
consider the linearized limit-state function at the design point in the standard normal space 
in Eq. (30) and obtain its variance by using the technique from the document on functions 
of random variables: 

  (72) 

This shows that the individual components of the alpha-vector serve as indicators of the 
importance, i.e., contribution to the total variance, of the corresponding random variables. 
As a result, the alpha-vector is the primary importance vector for the random variables y, 
i.e., the random variables in the standard normal space. The higher absolute value of ai, 

∂G
∂u0
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∂y*
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+ ∂G
∂u0 y*
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the more important random variable number i is. Furthermore, the sign of the components 
of the alpha-vector tells whether the random variable is a “load variable” or a “resistance 
variable:”  

  (73) 

Although a is a good importance vector for the random variables in the standard normal 
space, y, it may not be an accurate importance measure for the original random variables, 
x, when correlation is present. For that reason the following measure is employed to rank 
the random variables in the original space (Der Kiureghian 2005): 

  (74) 

where the Jacobian matrix is recognized and  is a diagonal matrix with the standard 
deviations of the “equivalent normal” random variables  on the diagonal. The covariance 
matrix of  is (Der Kiureghian 2005): 

  (75) 

Two additional importance vectors can be considered, essentially reliability sensitivities 
normalized by the standard deviation of the random variables: 

  (76) 

and 

  (77) 

 

SORM 
Essentially, the second-order reliability method (SORM) is an extension of FORM. 
Specifically, a hyper-paraboloid is employed to approximate the limit-state surface instead 
of a hyper-plane. The exact expression for the probability mass outside a hyper-paraboloid 
with distance b from the origin in the uncorrelated standard normal space is 

  (78) 

where n is the number of random variables. An alternative expression is the asymptotic 
approximation 

α i > 0 :       yi  is a load variable
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  (79) 

in which the FORM probability is multiplied by a correction factor that depends upon the 
principal curvatures of the limit-state surface at the design point, ki and  

  (80) 

The key question in SORM is how to determine the curvatures, ki. There are several 
options, some of which are outlined in the following sections.  

Curvature-based SORM 
Suppose the second-derivatives of the limit-state function are not too difficult to compute 
analytically. Then consider the second-order Taylor series expansion of the limit-state 
function in the standard normal space: 

  (81) 

where the Hessian matrix, H(y), of second-derivatives is identified. Take notice that H is 
indeed here defined in the standard normal y-space of random variables. Transformation 
of the Hessian in the original x-space to the y-space is addressed later. Substitution of the 
FORM-linearization of the limit-state function into Eq. (81), i.e., writing the linear Taylor 
series expansion as  yields 

  (82) 

To construct a hyper-paraboloid at the design point in the standard normal space the 
coordinate system is first rotated so that one of the random variable axes align with the 
alpha-vector. Usually, the last random variable is arbitrarily selected for this purpose. This 
is shown for the simple example of two random variables in Figure 6. The tilde is used to 
identify the rotated coordinate system.  

 
Figure 6: Rotation of the standard normal space to construct hyper-paraboloid. 
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Mathematically, the rotation of the coordinate system is expressed by means of a rotation 
matrix, P: 

  (83) 

where P is an n-dimensional square matrix with the alpha-vector as its last row, where n is 
the number of random variables. P satisfies the property PTP=I so that 

  (84) 

The other rows of P are orthogonal to the alpha-vector and orthogonal to each other. They 
serve the purpose of ensuring a proper Cartesian coordinate system of the rotated system. 
Algorithms like the Gram-Schmidt procedure are employed to establish the set of 
orthogonal vectors. Substitution of Eq. (83) into the Taylor approximation in Eq. (81) 
yields 

  (85) 

where . To further simplify, the limit-state function is scaled by the norm of 
the gradient at the design point, so that 

  (86) 

where  and . The design point coordinates in 
the rotated coordinate system is 

  (87) 

That allows the matrix multiplication in Eq. (86) to be reduced to 

  (88) 

where the subscript “cut” indicates removal of the last vector element and the last matrix 
row and column. Finally, Acut is diagonalized by computing its eigenvalues and Eq. (88) is 
rewritten as 

  (89) 

where ki are the n-1 eigenvalues of Acut, which are the principal curvatures of the hyper-
paraboloid. These are the curvatures that enter into Eq. (79) to compute the failure 
probability from SORM. A positive curvature, ki, implies an outwards-curving limit-state 
surface in the  coordinate system. If the curvature is negative, it cannot be so large 
that points on the limit-state surface are closer to the origin than the design point. That 
would invalidate the design point from FORM.  In other words, the absolute value of 
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negative curvatures cannot exceed the curvature of a circle around the origin with curvature 
1/b: 

  (90) 

An important task above is to calculate the Hessian. The limit-state function is often 
defined in terms of numerical responses collected in u, which depends upon the input 
variables x. In that case the Hessian is obtained by invoking the product rule and chain rule 
of differentiation: 

 (91) 

where summation over repeated indices is implied. The matrix identified by A, not to be 
confused with the matrix A above, is readily obtained because the limit-state function is 
usually an algebraic function of the responses u. The matrix identified by B contains the 
response sensitivities from the numerical response algorithm. The matrix identified by C 
is obtained by differentiating the probability transformation twice. Suppose the Nataf 
transformation is used, then the x-variables are linked with z-variables: 

  (92) 

The first differentiation yields: 

  (93) 

where the result is a diagonal matrix because each marginal probability distribution varies 
only with its own random variable. The second differentiation yields: 
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  (94) 

The result is zero for i≠j because each marginal probability distribution varies only with its 
own random variable. This means that Eq. (94) is a square diagonal tensor, with dimension 
equal to the number of random variables, just like Eq. (93) was a square diagonal matrix. 
In turn, the z-variables are linked with the y-variables via the Cholesky decomposition of 
the modified correlation matrix: 

  (95) 

Differentiation yields 

  (96) 

The second differentiation yields zero. We are now ready to substitute the derivatives of 
the probability transformation into the expressions for the gradient and Hessian. Using the 
above equations we obtain the gradient vector in the y-space as follows: 

  (97) 

where square brackets are used to denote a diagonal matrix. Next we reconsider Eq. (91), 
now including the intermediate z-variables: 
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The last term is zero because the second differentiation of z=Ly is zero. To further simplify, 
consider explicit limit-state functions where g depends directly on x without any u-
variables. Eq. (98) then reads: 

  (99) 

Caution must be exercised when conducting matrix multiplications to evaluate Eq. (99). 
The first term has factors with indices ln, no, oj, lm, mi. Here one can first multiply the 
three first matrices ln, no, oj giving lj. The last to matrices lm, mi are multiplied to give li. 
Hence, the final value of the first term is the lj matrix transposed times the li matrix. The 
second term has factors with indices l, lmn, nj, mi. The product of the first two is an mn 
matrix with values  along the diagonal. Then what remains in the 
second term is mn, nj, mi. To multiply this out with matrix products the last of them, mi, is 
transposed and placed first to give the matrix product im, mn, nj. These calculations are 
demonstrated for the CalREL limit-state function on the example-webpage. In summary, 
the procedure for curvature-fitted SORM is: 

1. Have an analytical expression for the limit-state function 
2. Differentiate it twice to obtain gradient and Hessian 
3. Establish the A-matrix use an orthogonalization algorithm 
4. Perform eigenvalue analysis to obtain principal curvatures 
5. Update the failure probability using Eq. (79) 

This approach is straightforward but it is limited to explicit limit-state functions, or at least 
limit-state functions for which second-derivative computations are possible. Obtaining 
those derivatives can be computationally expensive, and the results may be prone to 
numerical noise in the calculation of the limit-state function.  

Gradient-based SORM 
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Figure 7: Geometrical considerations for gradient-based SORM. 
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