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Time-stepping Algorithms 
Many of the differential equations derived on this website contain derivatives with 
respect to spatial coordinates. However, in plasticity, dynamics, and other problems 
involving temporal evolution, derivatives with respect to time appears. A basic 
mathematical example is  

  (1) 

where x is the unknown time-varying quantity, t is time, r is the notation for the right-
hand side, and one dot means one derivative with respect to time. Eq. (1) says that r is the 
derivative of x. Stepping forward in time, one option is the forward Euler method, 

  (2) 

Another is the backward Euler method, in which the right-hand side is evaluated at the 
new time-step: 

  (3) 

 Yet another is the midpoint rule:  

  (4) 

The forward Euler approach is “explicit” because there is no equation to be solved before 
taking the time-step, while the others are “implicit” methods.  

SDOF Problems 
The equation of motion that governs single-degree-of-freedom (SDOF) problems is a 
second-order differential equation: 

  (5) 

where the symbols are defined in the document on vibration of a single mass. Among the 
numerical “time-stepping” methods to solve this problem are 

• Central difference method 
• Houbolt’s method 
• Constant initial acceleration method 
• Constant average acceleration method 
• Newmark’s b methods 
• Generalized Newmark methods 

o Wilson’s q method 
o Hilber’s a method 
o Bossak-Newmark method 

• Runge-Kutta methods 

!x(t) = r x,t( )

xn+1 = xn + Δt ⋅r xn( )

xn+1 = xn + Δt ⋅r xn+1( )

xn+1 = xn + Δt ⋅r xn +
xn+1 − xn
2

⎛
⎝⎜

⎞
⎠⎟

M ⋅ !!u(t)+C ⋅ !u(t)+ K ⋅u(t) = F(t)
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The stability and accuracy of such methods are important characteristics. Depending on 
the size of the time-step, i.e., Dt, a method can be unstable, meaning that the errors grow 
without bounds. Even in the stable response regime, the accuracy may be poor if Dt is 
selected too large. Time-stepping algorithms are often written with subscripts that 
indicate the time-step at which the quantities are evaluated. For example, the notation 
  (6) 

gives the equation of motion evaluated at time t, while 
  (7) 

is the equation of motion at time t+Dt. A few algorithms employ Eq. (6) and thus 
formulate equilibrium at time t when solving for the displacement at time t+Dt. However, 
the algorithms presented in this document and implemented in the Python code posted on 
this website utilize the common approach; employ Eq. (7) and use equilibrium at time 
t+Dt when solving for the displacement at time t+Dt. In general, it is possible that 
information from the time-steps t–2Dt, t–Dt, t, and t+Dt is employed to obtain the solution 
at t+Dt. However, the algorithms presented in this document and implemented in the 
Python code posted on this website utilize only the solution at the previous step. Because 
the displacement is the integral of the velocity, and the velocity is the integral of the 
acceleration, it is natural to write time-stepping algorithms as 
  (8) 

  (9) 

Then Eqs. (8) and (9) are solved for  and  to facilitate substitution into Eq. (7). In 
this document, that rearranged time-stepping algorithm is written in the generic format 
  (10) 

  (11) 

Substitution of Eqs. (10) and (11) into Eq. (7) yields the equilibrium equation 

  (12) 

Rearranging yields a linear equation for un+1: 

  (13) 

After the solution un+1 is determined, Eqs. (10) and (11) provide the velocity and 
acceleration.  

M ⋅ !!un +C ⋅ !un + K ⋅un = Fn

M ⋅ !!un+1 +C ⋅ !un+1 + K ⋅un+1 = Fn+1

!un+1 = f (un , !un , !!un , !!un+1)

un+1 = f (un , !un , !!un , !!un+1)

!!un+1 !un+1

!!un+1 = a1 ⋅un+1 + a2 ⋅un + a3 ⋅ !un + a4 ⋅ !!un
!un+1 = a5 ⋅un+1 + a6 ⋅un + a7 ⋅ !un + a8 ⋅ !!un

M ⋅a1 ⋅un+1 +M ⋅a2 ⋅un +M ⋅a3 ⋅ !un +M ⋅a4 ⋅ !!un
+C ⋅a5 ⋅un+1 +C ⋅a6 ⋅un +C ⋅a7 ⋅ !un +C ⋅a8 ⋅ !!un
+K ⋅un+1 = F

a1 ⋅M + a5 ⋅C + K( ) ⋅un+1 = F − a4 ⋅M + a8 ⋅C( ) ⋅ !!un
     − a3 ⋅M + a7 ⋅C( ) ⋅ !un
     − a2 ⋅M + a6 ⋅C( ) ⋅un
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Constant Average Acceleration 
Consider the popular method of constant average acceleration, in which the velocity is 
based on the average acceleration: 

  (14) 

and as a result, the displacement is 

  (15) 

This time-stepping algorithm, written in the generic form of Eqs. (10) and (11), is 

  (16) 

Having those constants, the solution procedure follows the discussion from Eq. (10) to 
Eq. (13).  

Newmark’s b Method 
This is a family of methods is defined by two parameters g and b:  

  (17) 

  (18) 

Written in the generic form of Eqs. (10) and (11), this algorithm reads 

  (19) 

Having those constants, the solution procedure follows the discussion from Eq. (10) to 
Eq. (13).  

MDOF Problems: Implicit vs. Explicit 
The time-stepping algorithms for multi-degree-of-freedom (MDOF) are straightforward 
extensions of the algorithms above for SDOF problem. The difference is that the equation 
of motion now is a system of equations: 

  (20) 

where the displacements, velocities, and accelerations are 

!un+1 = !un + Δt ⋅ !!un+1 + !!un
2

⎛
⎝⎜

⎞
⎠⎟

un+1 = un + Δt ⋅ !un + Δt 2 ⋅ !!un+1 + !!un
4

⎛
⎝⎜

⎞
⎠⎟

a1 =
4
Δt 2

a2 = − 4
Δt 2

a3 = − 4
Δt

a4 = −1

a5 =
2
Δt

a6 = − 2
Δt

a7 = −1 a8 = 0

!un+1 = !un + 1− γ( ) ⋅ Δt ⋅ !!un + γ ⋅ Δt ⋅ !!un+1

un+1 = un + Δt ⋅ !un +
1
2
− β⎛

⎝⎜
⎞
⎠⎟ ⋅Δt

2 ⋅ !!un + β ⋅ Δt 2 ⋅ !!un+1

a1 =
1

β ⋅ Δt 2
a2 = − 1

β ⋅ Δt 2
a3 = − 1

β ⋅ Δt
a4 = 1− 1

2β
⎛
⎝⎜

⎞
⎠⎟

a5 =
γ

β ⋅ Δt
a6 = − γ

β ⋅ Δt
a7 = 1− γ

β
⎛
⎝⎜

⎞
⎠⎟

a8 = Δt ⋅ 1− γ
2β

⎛
⎝⎜

⎞
⎠⎟

M!!un+1 +C !un+1 +Kun+1 = Fn+1
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  (21) 

Time-stepping algorithms are referred to as implicit or explicit. Whether an algorithm is 
implicit or explicit has little bearing on the computational efficiency for SDOF problems. 
It is, however, meaningful to discuss those concepts when addressing MDOF problems. 
With an explicit algorithm, the solution at the next time-step is obtained without solving a 
system of equations of the generic form Ku=F. Conversely, implicit methods require the 
solution of such a system at every time-step. For a time-stepping algorithm to be explicit, 
it must enforce equilibrium at time t, using Eq. (6). Furthermore, must only use quantities 
at time t in the right-hand side of Eqs. (8) and (9). It seems computationally appealing to 
formulate explicit time-stepping algorithms, but they are not addressed here. One reason 
is problems with accuracy; another reason is that in nonlinear structural analysis it is 
necessary to solve the system of equilibrium equations at each time-step anyway, as part 
of the Newton-Raphson scheme.  

 

!!un+1 = a1 ⋅un+1 + a2 ⋅un + a3 ⋅ !un + a4 ⋅ !!un
!un+1 = a5 ⋅un+1 + a6 ⋅un + a7 ⋅ !un + a8 ⋅ !!un


