
Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Time-stepping Algorithms Updated March 20, 2022 Page 1

Time-stepping Algorithms
Many of the differential equations derived on this website contain derivatives with
respect to spatial coordinates. However, in plasticity, dynamics, and other problems
involving temporal evolution, derivatives with respect to time appears. A basic
mathematical example is

 (1)

where x is the unknown time-varying quantity, t is time, r is the notation for the right-
hand side, and one dot means one derivative with respect to time. Eq. (1) says that r is the
derivative of x. Stepping forward in time, one option is the forward Euler method,

 (2)

Another is the backward Euler method, in which the right-hand side is evaluated at the
new time-step:

 (3)

 Yet another is the midpoint rule:

 (4)

The forward Euler approach is “explicit” because there is no equation to be solved before
taking the time-step, while the others are “implicit” methods.

SDOF Problems
The equation of motion that governs single-degree-of-freedom (SDOF) problems is a
second-order differential equation:

 (5)

where the symbols are defined in the document on vibration of a single mass. Among the
numerical “time-stepping” methods to solve this problem are

• Central difference method
• Houbolt’s method
• Constant initial acceleration method
• Constant average acceleration method
• Newmark’s b methods
• Generalized Newmark methods

o Wilson’s q method
o Hilber’s a method
o Bossak-Newmark method

• Runge-Kutta methods

!x(t) = r x,t()

xn+1 = xn + Δt ⋅r xn()

xn+1 = xn + Δt ⋅r xn+1()

xn+1 = xn + Δt ⋅r xn +
xn+1 − xn
2

⎛
⎝⎜

⎞
⎠⎟

M ⋅ !!u(t)+C ⋅ !u(t)+ K ⋅u(t) = F(t)

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Time-stepping Algorithms Updated March 20, 2022 Page 2

The stability and accuracy of such methods are important characteristics. Depending on
the size of the time-step, i.e., Dt, a method can be unstable, meaning that the errors grow
without bounds. Even in the stable response regime, the accuracy may be poor if Dt is
selected too large. Time-stepping algorithms are often written with subscripts that
indicate the time-step at which the quantities are evaluated. For example, the notation
 (6)

gives the equation of motion evaluated at time t, while
 (7)

is the equation of motion at time t+Dt. A few algorithms employ Eq. (6) and thus
formulate equilibrium at time t when solving for the displacement at time t+Dt. However,
the algorithms presented in this document and implemented in the Python code posted on
this website utilize the common approach; employ Eq. (7) and use equilibrium at time
t+Dt when solving for the displacement at time t+Dt. In general, it is possible that
information from the time-steps t–2Dt, t–Dt, t, and t+Dt is employed to obtain the solution
at t+Dt. However, the algorithms presented in this document and implemented in the
Python code posted on this website utilize only the solution at the previous step. Because
the displacement is the integral of the velocity, and the velocity is the integral of the
acceleration, it is natural to write time-stepping algorithms as
 (8)

 (9)

Then Eqs. (8) and (9) are solved for and to facilitate substitution into Eq. (7). In
this document, that rearranged time-stepping algorithm is written in the generic format
 (10)

 (11)

Substitution of Eqs. (10) and (11) into Eq. (7) yields the equilibrium equation

 (12)

Rearranging yields a linear equation for un+1:

 (13)

After the solution un+1 is determined, Eqs. (10) and (11) provide the velocity and
acceleration.

M ⋅ !!un +C ⋅ !un + K ⋅un = Fn

M ⋅ !!un+1 +C ⋅ !un+1 + K ⋅un+1 = Fn+1

!un+1 = f (un , !un , !!un , !!un+1)

un+1 = f (un , !un , !!un , !!un+1)

!!un+1 !un+1

!!un+1 = a1 ⋅un+1 + a2 ⋅un + a3 ⋅ !un + a4 ⋅ !!un
!un+1 = a5 ⋅un+1 + a6 ⋅un + a7 ⋅ !un + a8 ⋅ !!un

M ⋅a1 ⋅un+1 +M ⋅a2 ⋅un +M ⋅a3 ⋅ !un +M ⋅a4 ⋅ !!un
+C ⋅a5 ⋅un+1 +C ⋅a6 ⋅un +C ⋅a7 ⋅ !un +C ⋅a8 ⋅ !!un
+K ⋅un+1 = F

a1 ⋅M + a5 ⋅C + K() ⋅un+1 = F − a4 ⋅M + a8 ⋅C() ⋅ !!un
 − a3 ⋅M + a7 ⋅C() ⋅ !un
 − a2 ⋅M + a6 ⋅C() ⋅un

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Time-stepping Algorithms Updated March 20, 2022 Page 3

Constant Average Acceleration
Consider the popular method of constant average acceleration, in which the velocity is
based on the average acceleration:

 (14)

and as a result, the displacement is

 (15)

This time-stepping algorithm, written in the generic form of Eqs. (10) and (11), is

 (16)

Having those constants, the solution procedure follows the discussion from Eq. (10) to
Eq. (13).

Newmark’s b Method
This is a family of methods is defined by two parameters g and b:

 (17)

 (18)

Written in the generic form of Eqs. (10) and (11), this algorithm reads

 (19)

Having those constants, the solution procedure follows the discussion from Eq. (10) to
Eq. (13).

MDOF Problems: Implicit vs. Explicit
The time-stepping algorithms for multi-degree-of-freedom (MDOF) are straightforward
extensions of the algorithms above for SDOF problem. The difference is that the equation
of motion now is a system of equations:

 (20)

where the displacements, velocities, and accelerations are

!un+1 = !un + Δt ⋅ !!un+1 + !!un
2

⎛
⎝⎜

⎞
⎠⎟

un+1 = un + Δt ⋅ !un + Δt 2 ⋅ !!un+1 + !!un
4

⎛
⎝⎜

⎞
⎠⎟

a1 =
4
Δt 2

a2 = − 4
Δt 2

a3 = − 4
Δt

a4 = −1

a5 =
2
Δt

a6 = − 2
Δt

a7 = −1 a8 = 0

!un+1 = !un + 1− γ() ⋅ Δt ⋅ !!un + γ ⋅ Δt ⋅ !!un+1

un+1 = un + Δt ⋅ !un +
1
2
− β⎛

⎝⎜
⎞
⎠⎟ ⋅Δt

2 ⋅ !!un + β ⋅ Δt 2 ⋅ !!un+1

a1 =
1

β ⋅ Δt 2
a2 = − 1

β ⋅ Δt 2
a3 = − 1

β ⋅ Δt
a4 = 1− 1

2β
⎛
⎝⎜

⎞
⎠⎟

a5 =
γ

β ⋅ Δt
a6 = − γ

β ⋅ Δt
a7 = 1− γ

β
⎛
⎝⎜

⎞
⎠⎟

a8 = Δt ⋅ 1− γ
2β

⎛
⎝⎜

⎞
⎠⎟

M!!un+1 +C !un+1 +Kun+1 = Fn+1

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Time-stepping Algorithms Updated March 20, 2022 Page 4

 (21)

Time-stepping algorithms are referred to as implicit or explicit. Whether an algorithm is
implicit or explicit has little bearing on the computational efficiency for SDOF problems.
It is, however, meaningful to discuss those concepts when addressing MDOF problems.
With an explicit algorithm, the solution at the next time-step is obtained without solving a
system of equations of the generic form Ku=F. Conversely, implicit methods require the
solution of such a system at every time-step. For a time-stepping algorithm to be explicit,
it must enforce equilibrium at time t, using Eq. (6). Furthermore, must only use quantities
at time t in the right-hand side of Eqs. (8) and (9). It seems computationally appealing to
formulate explicit time-stepping algorithms, but they are not addressed here. One reason
is problems with accuracy; another reason is that in nonlinear structural analysis it is
necessary to solve the system of equilibrium equations at each time-step anyway, as part
of the Newton-Raphson scheme.

!!un+1 = a1 ⋅un+1 + a2 ⋅un + a3 ⋅ !un + a4 ⋅ !!un
!un+1 = a5 ⋅un+1 + a6 ⋅un + a7 ⋅ !un + a8 ⋅ !!un

