Numerical Integration (Quadrature)

Quadrature is another name for numerical integration, which is helpful in these notes for evaluating integrals in the finite element method. We consider integrals of the type

$$
\begin{gather*}
\int_{a}^{b} f(x) d x \tag{1}\\
\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) d x d y \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \int_{a_{3}}^{b_{3}} f(x, y, z) d x d y d z \tag{3}
\end{equation*}
$$

i.e., single-fold, two-fold, and three-fold integrals. To apply quadrature rules, all such integrals are transformed into a domain from -1 to 1 , in all directions. To transform the integral in Eq. (1) into an integral along the ξ-axis from -1 to 1 , the transformation is

$$
\begin{equation*}
x=\left(\frac{b-a}{2}\right) \cdot \xi+\left(\frac{b+a}{2}\right) \tag{4}
\end{equation*}
$$

In addition to substituting Eq. (4) into the function $f(x)$, it is necessary to transform the integral differentials. To accomplish that, the integrand is multiplied by the determinant of the Jacobian matrix, i.e., $J=|\mathbf{J}|$. The Jacobian scalar or matrix contains the ratio of differentials in the different coordinate systems. For the integrals shown above, the Jacobian scalar/matrices read

$$
\begin{gather*}
J=\frac{d x}{d \xi}=\frac{b-a}{2} \tag{5}\\
J=\left|\begin{array}{cc}
\left(\frac{b_{1}-a_{1}}{2}\right) & 0 \\
0 & \left(\frac{b_{2}-a_{2}}{2}\right)
\end{array}\right|=\left(\frac{b_{1}-a_{1}}{2}\right) \cdot\left(\frac{b_{2}-a_{2}}{2}\right) \tag{6}
\end{gather*}
$$

$$
J=\left|\begin{array}{ccc}
\left(\frac{b_{1}-a_{1}}{2}\right) & 0 & 0 \tag{7}\\
0 & \left(\frac{b_{2}-a_{2}}{2}\right) & 0 \\
0 & 0 & \left(\frac{b_{3}-a_{3}}{2}\right)
\end{array}\right|=\left(\frac{b_{1}-a_{1}}{2}\right) \cdot\left(\frac{b_{2}-a_{2}}{2}\right) \cdot\left(\frac{b_{3}-a_{3}}{2}\right)
$$

The Gauss family of integration rules is important in structural analysis. Consider the transformed single-fold integral in Eq. (1). The integration rule is written

$$
\begin{equation*}
\int_{-1}^{1} f(\xi) d \xi=\sum_{i=1}^{N} w_{i} f\left(\xi_{i}\right) \tag{8}
\end{equation*}
$$

where $N=$ number of integration points, $w_{i}=$ integration weights, and $\xi_{i}=$ integration points. The integration weights \& points are derived by looking at reference cases with known solutions. First consider $N=1$, in which case Gauss integration reads

$$
\begin{equation*}
\int_{-1}^{1} f(\xi) d \xi=w_{1} f\left(\xi_{1}\right) \tag{9}
\end{equation*}
$$

With two unknowns, i.e., w_{1} and ξ_{1}, we can integrate linear functions, $f(\xi)=a \xi+b$, which has two constants, in an exact manner. That means the exact solution

$$
\begin{equation*}
\int_{-1}^{1}(a \xi+b) d \xi=2 b \tag{10}
\end{equation*}
$$

should equal the quadrature solution

$$
\begin{equation*}
w_{1}\left(a \xi_{1}+b\right)=a w_{1} \xi_{1}+w_{1} b \tag{11}
\end{equation*}
$$

The only way for that to be the case for any a and b is that $w_{1}=2$ and $w_{1} \xi_{1}=0$, meaning that $\xi_{1}=0$. Now consider $N=2$, in which case we have the four unknowns ξ_{1}, ξ_{2}, w_{1}, and w_{2}. With four parameters, we can integrate a $3^{\text {rd }}$ order polynomial, which has four constants, in an exact manner. That means the exact solution

$$
\begin{equation*}
\int_{-1}^{1}\left(a \xi^{3}+b \xi^{2}+c \xi+d\right) d \xi=\frac{2}{3} b+2 d \tag{12}
\end{equation*}
$$

should equal the quadrature solution

$$
\begin{equation*}
w_{1}\left(a \xi_{1}^{3}+b \xi_{1}^{2}+c \xi_{1}+d\right)+w_{2}\left(a \xi_{2}^{3}+b \xi_{2}^{2}+c \xi_{2}+d\right) \tag{13}
\end{equation*}
$$

Collecting terms in a, b, c, and d yields four equations by comparing Eq. (12) with Eq. (13):

Terms with a :

$$
\begin{equation*}
\xi_{1}^{3} w_{1}+\xi_{2}^{3} w_{2}=0 \tag{14}
\end{equation*}
$$

Terms with $b: \quad \xi_{1}^{2} w_{1}+\xi_{2}^{2} w_{2}=\frac{2}{3}$

Terms with c :

$$
\begin{equation*}
\xi_{1} w_{1}+\xi_{2} w_{2}=0 \tag{16}
\end{equation*}
$$

Terms with d :

$$
\begin{equation*}
w_{1}+w_{2}=2 \tag{17}
\end{equation*}
$$

Solving those four equations for the four unknowns yields $\xi_{1}=-\frac{1}{\sqrt{3}}=-0.57735, \xi_{2}=$ $\frac{1}{\sqrt{3}}=0.57735$, and $w_{1}=w_{2}=1$. Table 1 provides the integration points \& weights for N up to four. It is understood that Gauss integration provides exact results for integration of polynomials of order up to $2 N-1$. Two and three-fold integrals are evaluated by applying the same points and weights in orthogonal directions. For example, for a two-fold integral:

$$
\begin{equation*}
\int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta) d \xi d \eta=\sum_{i=1}^{N} \sum_{j=1}^{N} w_{i} w_{j}\left(\xi_{i}, \eta_{j}\right) \tag{18}
\end{equation*}
$$

Table 1: Integration points and weights for Gauss quadrature.

N	x_{i}	w_{i}
1	0	2
2	-0.577350269189626	1
	+0.577350269189626	1
3	-0.774596669241483	0.555555555555556
	0	0.888888888888889
	+0.774596669241483	0.555555555555556
4	-0.861136311594053	0.347854845137454
	-0.339981043584856	0.652145154862546
	+0.339981043584856	0.652145154862546
	+0.861136311594053	0.347854845137454

