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Euler-Bernoulli Beam Elements 
Euler-Bernoulli theory is a theory that governs the bending of beams whose cross-sections 
remain plane and perpendicular to the neutral axis during bending. The key objective in 
this document is to establish the stiffness matrix, K, for an Euler-Bernoulli beam element, 
without axial and torsional degrees of freedom. Figure 1 shows the degrees of freedom 
(DOFs) in the “basic” and “local” configuration for the considered element.  

 
Figure 1: Beam element configurations for 2D structural analysis. 

One approach for establishing the stiffness matrix is to apply the slope-deflection equation, 
which is derived using virtual work in another document on this website, to the basic 
configuration. Keeping in mind that Kij=force along DOF number i caused by a unit 
deformation along DOF number j the result is 

   (1) 

Applying the transformation matrix Tbasic-to-local from the document that explains the 
computational stiffness matrix the local element stiffness matrix is 
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Another approach for establishing the element stiffness matrix is to use the finite element 
method. The most straightforward way of applying that method in this context is to 
substitute shape functions into the “weak form” of the boundary value problem (BVP). 
There are two ways of obtaining the weak form, both shown below.  

Weak Form from Virtual Work 
The principle of virtual work reads  

   (3) 

where the subscript “int” is for internal work and the subscript “ext” is for external work. 
The principle of virtual work comes in two forms, the principle of virtual displacements 
and the principle of virtual forces. It is the former that is most often applied in the finite 
element method. For the present case, the principle of virtual displacements reads 
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Substitution of the linear elastic material law yields 

   (5) 

where E is the modulus of elasticity. Substitution of kinematic compatibility for Euler-
Bernoulli beams yields 

   (6) 

The separation of the left-hand side into a cross-section integral and a longitudinal integral 
along the beam yields 

   (7) 

where the cross-section constant I, i.e., the moment of inertia, has been introduced. Eq. (7) 
is the weak form of the BVP for beam bending of Euler-Bernoulli beams.  
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Weak Form from Strong Form 
The weak form can also be established by starting with the strong form of the BVP, i.e., 
the differential equation. For Euler-Bernoulli beams, that equation is written on residual 
form as follows: 
  (8) 

That equation is then multiplied by a “weight function” and integrated over the beam: 

  (9) 

This means that, instead of demanding equilibrium along every point along the beam, 
equilibrium is only required “on average” over the entire beam. This is a weaker form of 
the BVP and may in itself serve as the foundation for the finite element method. However, 
we proceed to the weak form already derived in Eq. (7) by reorganizing Eq. (9) to read 

  (10) 

We now aim to avoid unequal number of derivatives of w and dw in the first term. Twice 
application of integration by parts yield 

  (11) 

where the boundary terms cancel. More details about why they cancel are presented in the 
document on Energy Methods. We observe that Eq. (11) matches Eq. (7), which was 
derived earlier. Notice that equilibrium was not substituted into virtual work formulation; 
the principle of virtual displacements represents integrated equilibrium.  

Shape Functions 
Now consider the beam element in its basic configuration, i.e., with two DOFs as shown 
in Figure 1. The discretization of this problem by means of shape functions follows. Let 
the clockwise rotation of the left end be denoted u1 and let the clockwise rotation at the 
right end be denoted u2. Maintaining zero displacement at both ends, third-order 
polynomial shape functions are possible. Consequently, the shape functions are: 
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where  
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Substitution into the weak form yields 
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  (14) 

where du is the virtual nodal deformations because the virtual displacements are discretized 
by the same shape functions as the actual displacements. Taking the transpose of two 
parentheses that contain scalars, applying the transpose to each vector in the parenthesis, 
thereby flipping the order of multiplication inside the parenthesis, and finally rearranging 
yields 

  (15) 

Furthermore, because the virtual displacements are arbitrary the parenthesis must be zero 
for this equation to be generally valid. Consequently, it is rewritten 

  (16) 

where the stiffness matrix and load vector are identified. Notice that this load vector is 
usually labelled 𝐅" in the documents on this website. Importantly, the finite element method 
yields integral expressions for the stiffness matrix and the load vector. Substitution of Eq. 
(13) into Eq. (16) and assuming that the distributed element load is uniform yields 

  (17) 

This stiffness matrix is equal to that of the classical stiffness method because the third-
order polynomial shape functions match the solution of the differential equation for beam 
bending. Under such circumstances the finite element method is exact. Notice that the 
right-hand side load vector has the correct sign for upward-acting qz and clockwise rotation 
DOFs. 
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