
Buckling Modes for Two-storey Frame
When the stiffness matrix in linear static structural analysis is amended with geometric stiffness terms 
it is possible to compute the buckling loads, and associated displaced shapes, i.e., buckling modes, of 
the structure. There will be as many buckling loads as there are DOFs, but only the smallest is 
relevant in most practical applications because it is the governing buckling load. The geometric 
stiffness matrix for each element type is established in separate documents. Upon assembling the final 
structural stiffness matrix, including geometric stiffness contributions, the system of equilibrium 
equations is written

    K - PKG u = F

where KG is the geometric stiffness matric, not to be confused with the notation for the stiffness 
matrix in the global element configuration. The factorization of the axial force level P as a multiplier 
of the geometric stiffness matrix of the structure is noted. This is possible when the considered axial 
forces are from one source, such as gravity. It is also necessary that the formulation be based on the 
second-order linearized theory. The use of exact Livesley functions, i.e., the exact solution of the 
differential equation, prevents the form of the equation above. However, when that form is possible, 
then the buckling loads, Pcr, of the system can be computed. First, remove the other loads that are 
represented by the external load vector, i.e., set F=0. Next, recognize that the remaining system of 
equations is an eigenvalue problem; it is homogeneous with non-trivial solutions only when the 
determinant of the coefficient matrix is zero. Hence, the equation

    detK - PKG = 0

is solved to obtain the critical values of the axial load level, which are the buckling loads. Each 
buckling load has a corresponding buckling mode. While the buckling loads are the eigenvalues, the 
buckling modes are the eigenvectors. The modes represent the displaced shape of the structure when 
it buckles at the corresponding buckling load. The amplitude of the deformation is not uniquely 
determined. However, the shape is obtained by setting one component of u equal to unity and solving 
for the others. Software applications that solve eigenvalue problems do this automatically.

where KG

Problem Definition
Consider the frame in the figure below. The floors are considered infinitely rigid. As a result, there 
are only two degrees of freedom, as shown. The out-of-plane length is 1m. The total mass of each 1m 
strip of floor is denoted M. The corresponding weight, i.e., 9.81m  s2 times the mass is denoted W. 
The objective is to find the buckling loads and associated buckling modes. 

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Examples Updated January 1, 2022 Page 1



1

2

H1

H2

EI=∞

EI=∞

EIEI

EIEI

Mass, M, and weight, W

Mass, M, and weight, W

Wall thickness, t

Input [N, m, kg, sec]
Ε = 60 × 109;
t = 0.2;
H1 = 4.0;
H2 = 3.5;
M = 10 000;

Bending stiffness:

EI = Ε
t3

12

4. × 107which yields:

Elastic stiffness matrix

K0 = 2
12 EI

H13
+ 2

12 EI

H23
, -2

12 EI

H23
, -2

12 EI

H23
, 2

12 EI

H23
 ;

K0 // MatrixForm

3.73907 × 107 -2.23907 × 107

-2.23907 × 107 2.23907 × 107
which yields:
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Geometric stiffness matrix

KG = 2
6 (W)

5 H1
+ 2

6  W
2


5 H2
, -2

6  W
2


5 H2
, -2

6  W
2


5 H2
, 2

6  W
2


5 H2
;

KG // MatrixForm

0.942857 W -0.342857 W
-0.342857 W 0.342857 W

which yields:

Buckling loads & mode shapes
Compute the determinant:

det = Det[K0 - KG] // FullSimplify // Expand

3.3586 × 1014 - 1.85773 × 107 W + 0.205714 W2which yields:

Then set the determinant equal to zero, to find the buckling loads:

soln = Solve[det ⩵ 0, W]

W → 2.5 × 107, W → 6.53061 × 107which yields:

The buckling mode shape associated with the first buckling load is obtained by substituting that 
buckling load, and setting one of the components of the displacement vector equal to one, as a 
reference value when solving for the other:

Solve[((K0 - KG) /. soln[[1, 1]]).{u1, 1} ⩵ {0, 0}, u1]

{{u1 → 1.}}which yields:

Second mode shape:

Solve[((K0 - KG) /. soln[[2, 1]]).{u1, 1} ⩵ {0, 0}, u1]

u1 → -1.54042 × 10-16which yields:

A plot of those two shapes:
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Wcr=25,000kN Wcr=65,300kN

Check of eigenvalues, using a function in Mathematica:

EigenvaluesK0,
KG

W


6.53061 × 107, 2.5 × 107which yields:

Check of eigenvectors, using a function in Mathematica (different numbers, but that is fine; the 
shapes are the same as above):

EigenvectorsK0,
KG

W


1.86227 × 10-17, 1., {-0.707107, -0.707107}which yields:
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