
Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Methods and Pointers in C++ June 30, 2021 Page 1

Methods and Pointers in C++
Methods
It is smart to organize code into subroutines to avoid keeping all the code in one long
sequence. Hence, in computer programming, the concept of “subroutines” is a basic one.
In Python they are called functions; in C++ they are called methods or functions, declared
in the header file as follows:
 int methodName(double b, double &c, double *d);

The first word can be void, int, double, etc. It states the type of the output of the
method. If void, the method does not return any value and the implementation of the
function simply ends with return;. Otherwise, the implementation of the method is
terminated by return value;. Often, the int output type is employed as a flag that
reveals how the computations in the method progressed. For example, a negative result is
returned when the computations were unsuccessful. Next, the parenthesis of the
declaration contains the argument list, which can also be void. The variables in the
argument list are utilized to input and output values to/from the method. The sum total of
return type, method name, and argument list is called the signature of the method.
Methods with the same name but different overall signature, called overloading, are not
uncommon.
Arguments are either passed-by-value or passed-by-reference. The former is the default
and means that a copy of the variable is passed and the original parameter remains
untouched. The latter is indicated by the ampersand, &, see above, and means that the
variable’s memory address is passed, which implies that the original value is easily
changed within the function. A third option is to pass pointers, which also represent
memory addresses, as described shortly. Passing memory addresses instead of data is
usually more efficient, but more dangerous because the passed data can be changed
within the method, unless it is prefaced by const to make it read-only.

A method can be called in various ways, depending on the location of the call relative to
where the method is implemented. If the method is implemented in the same cpp file,
then it can be called like this:

a = methodName(b,c,d);

If a method is implemented in a class (see separate document on object-oriented
programming) for which an instance is available, the method can be called like this:

a = theClassInstance.methodName(b,c,d);

If a method is implemented in a class for which a pointer to an instance is available, then
the method is called like this:

a = theClassInstance->methodName(b,c,d);

Every C++ program automatically starts with a call to the “main method,” which must
always be implemented in a file named main.cpp. The main method needs no declaration

Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca

Methods and Pointers in C++ June 30, 2021 Page 2

and usually no main.h file exists. A basic implementation if the main.cpp file can be like
this:

#include <iostream>
int main()
{
 std::cout << "Hello World!";
}

Pointers
A pointer contains a memory address and is declared by a the asterisk:

double *a=0;

Initializing the pointer to zero, as above, is optional but common; it facilitates a check of
whether it has been given an actual address: if (a==0) {...}. The pointer
declaration above does not actually assign any memory; that is done with a “new”
statement:

a = new double;

The two statements above can be combined into one:
 double *a = new double;

The variable value that is stored at the pointer’s memory address is set by employing the
asterisk symbol to “dereference” the pointer:

*a = 5.0;

Dereferencing is necessary because the statement
a = 5.0;

would actually increase the memory address by 5, with unpredictable and bad result.
Dereferencing is also used to carry out mathematical operations with the variables that
are stored in pointers:

double x = (*a)+2.0;

where, without the asterisk it would be the memory address that would increase by two.
Pointers can lead to “memory leaks” if they are not deleted. Every “new” statement must
be accompanied by a “delete” statement later in the code, to release the memory that was
occupied by the pointer:

delete a;

Reference variables are similar to pointers; they contain the memory address of another
parameter:

double &b = c;

where b is a reference variable that now contain the memory address of c.

