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Hazard Curves and Fragility 
Functions 

Consider Figure 1, which shows the concept of hazard curves on the left, and a fragility 
function on the right. IM is a random variable that represents some site-specific ground 
motion intensity measure, with outcomes denoted by im. The failure event is denoted by 
F. The hazard curve is shown in two different versions. At the top of Figure 1a, it is given 
as a complementary cumulative distribution function, CCDF, denoted G(im). Using that 
function, a classical application of the theorem of total probability is the calculation of the 
probability of failure as  

  (1) 

where f(im) is the probability density function. The following abbreviated version is helpful 
for numerical evaluation of Eq. (1): 

  (2) 

where the last equality implies that the im-axis has been divided into intervals. Midpoint-
integration implies that P(F|im)=fragility value at the midpoint of each interval and 
dG(im)=change in G in that interval. 

 
Figure 1: Hazard curves and fragility functions. 

At the bottom of Figure 1a, the hazard curve is given as an annual rate of exceedance of 
the ground shaking intensity im. In that case, the theorem of total probability gives the 
annual rate of failures as 
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  (3) 

where dl(im)=change in l in each interval along the im-axis. 

Failure Rate with Multiple Sources 
Above, only one source of earthquakes is considered. Now consider a situation with 
multiple sources. For example, in the Vancouver region it is common to consider three 
sources: Crustal, Subcrustal, and Subduction earthquakes. Let S be a discrete random 
variable with outcomes s=1,2,3,…,K, where K=number of considered earthquake sources. 
Furthermore, assume that each source is associated with a unique hazard curve and a unique 
fragility function. Importantly, in this section also assume that the hazard curve is given in 
terms of the annual rate of exceedance. That means the given fragility functions are 
P(F|im,s) and the given hazard curves as l(im,s). In this case, Eq. (3) gives the number of 
failures, per time, from each source. As a result, summation yields the sought failure rate: 

  (4) 

Failure Probability with Multiple Sources 
A variation on the previous section is addressed here, now seeking the failure probability. 
That means we seek the probability of failure that is akin to the rate of failure in Eq. (4). 
While rates could be added over earthquake sources to obtain Eq. (4), probabilities cannot 
be added in the same manner. 

Part I 
As a first case, it is assumed that the intensity value, im, is known a priori. In this case the 
failure probability associated with each source is obtained without integration over im: 

  (5) 

where P(F|IM=im,s) is the failure probability for source s. The result in Eq. (5) is 
conditioned upon source s. To remove this conditioning, i.e., to obtain the final P(F), the 
theorem of total probability is applied: 

  (6) 

where p(s) is the probability mass function for S. However, that PMF depends on im. To 
understand that, we recognize that the hazard curve formulated as an exceedance rate is, in 
a sense, the complementary integral of a histogram. One can imagine that histogram to 
count the number of im-occurrences in bins along the im-axis. That imaginary histogram, 
with a finite or infinite bin size, is essentially the slope of the hazard curve. Continuing the 
histogram analogy, that means that p(s) for a given im is the number of occurrences in the 
bin around the value im, divided by the total number of occurrences from different sources: 
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  (7) 

Substitution of Eq. (7) into Eq. (6) yields 

  (8) 

where dl(s) are the changes in the exceedance rate for various sources for a selected im-
interval.  

Part II 
Next, assume that IM remains a random variable, and further suppose the occurrence 
probability for each source is known. In other words, suppose p(s) is given, in addition to 
the fragility functions and the hazard curves. In contrast with the previous section, which 
did not involve integration along the im-axis, the hazard curves must now be considered. 
In order to obtain the probability of failure, we cannot employ the exceedance rates at the 
bottom of Figure 1a. Rather, it is necessary to employ hazard curves in the form of G(im), 
shown at the top of that figure. That means we consider as given the fragility functions 
P(F|im,s) and the hazard functions expressed as G(im,s). First, the integral over IM is 
carried out for each source, using Eq. (2), to obtain P(F|s). Next, the sum over sources is 
carried out, employing the expression in Eq. (6), yielding P(F).  

Part III 
Now consider both IM and S to be random variables, but without any other information 
than the fragility functions and hazard functions. In other words, we do now know the PMF 
p(s) beyond the information given by the hazard curves. Perhaps one way to address this 
problem is to employ the PMF from Eq. (6). Matching Eq. (7), but now employing the 
CCDF instead of exceedance rates, the PMF is 

  (9) 

It is clear that this PMF varies with im. For that reason, we now consider the combined 
total probability integration over the continuous variable, IM, and sum over the discrete 
variable, S, producing the following combined version of Eqs. (2) and (6):  

  (10) 
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The total differential in Eq. (10) is not conditioned on the earthquake source. To obtain that 
unconditional total differential, the following application of the theorem of total probability 
is made: 

  (11) 

The PMF p(s) appears in both Eq. (10) and Eq. (11). Matching Eq. (7), that PMF is 

  (12) 

Substitution of Eq. (12) into Eqs. (10) and (11), followed by the substitution of Eq. (11) 
into Eq. (10) yields 

  (13) 

Intermediate Response 
The modelling behind the equations presented above assume the chain IMàF. In other 
words, for a given im the probability of failure is known. A more general modelling 
approach is to assume the chain IMàDàF, where D is an intermediate continuous random 
variable, with realizations denoted by d, perhaps representing an inter-storey drift response. 
The first objective in this situation is to calculate the probability distribution for D, given 
the hazard curve. Suppose the hazard curve is given as the annual exceedance rate, l(im). 
Also assume that the CCDF of D, conditioned on im, is also available, denoted G(d|im). 
The theorem of total probability says 

  (14) 

where l(d) is the annual rate of exceedance of the drift, D, over the threshold d. Provided 
a fragility function of the form P(F|d), i.e., the failure probability is determined by the drift, 
d, the failure probability is, after another application of the theorem of total probability, as 
in Eq. (3): 

  (15) 

where Eq. (14) has been differentiated and substituted for dl(d).  
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Multiple Fragility Functions 
In earthquake engineering the concept of a fragility function is often extended by replacing 
the failure event with the entrance into certain damage states. In that case, the horizontal 
axis is often taken to represent a structural demand, called engineering demand parameter, 
EDP, such as an inter-storey drift. Figure 2 illustrates fragility functions for damage states 
ds1, ds2, and ds3. Each curve in Figure 2 displays the probability that the damage is equal 
to or greater than a specific damage state, for a given demand value. For instance, the left-
most curve displays the probability that the damage state is equal to or greater than ds1. 
The probability that the component is in a particular damage state is 

  (16) 

 

 
Figure 2: Fragility functions for damage. 

Formulation of Fragility Functions 
While hazard curves are essentially established by seismologists, a fragility function is 
ideally the result of a probabilistic analysis using reliability methods. However, fragility 
functions, such as those in Figure 2, are often described by the lognormal CDF. That choice 
is made because it is a convenient two-parameter function that increases monotonically 
from zero to unity. In this case, the lognormal CDF does not represent a probability 
distribution. As shown in the document on continuous random variables, the CDF of a 
lognormal variable X can be expressed in terms of the standard normal CDF as follows: 

  (17) 

where mX=median of X and sY=standard deviation of the underlying Normal random 
variable Y=ln(X). With a change in notation to let d=X denote the demand, and applied as 
a fragility function, Eq. (17) is rewritten: 

  (18) 

where b=standard deviation of ln(d) and q=median of d. It is reiterated that ln(d) has the 
normal distribution and that d thus have the lognormal distribution. The fragility function 
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in Eq. (18) has two parameters, b and q. Suppose N observations of d are available, namely 
the demand at which the component enters the considered damage state. To determine q, 
start by computing the median of the underlying normal random variable, ln(d), which is 
equal to its mean: 

  (19) 

Because mln(d)=ln(md), the value of q, i.e., the median of d, is 

  (20) 

To determine b it is tractable to consider observations of di/q, i.e., a lognormal variable 
with zero median. As a result, the realizations of ln(di/q) are normal with zero mean. In 
fact, b is indeed the standard deviation of ln(di/q). According to classical inference, the 
variance is: 

  (21) 

Thus,  

  (22) 

Of course, a conceptually simpler approach is to compute the sample mean and sample 
standard deviation of di and thereafter compute the corresponding distribution parameters 
of whatever distribution is selected, such as the lognormal.  

References 
Cornell, C. A., Jalayer, F., Hamburger, R. O., and Foutch, D. A. (2002). “Probabilistic 

Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame 
Guidelines.” ASCE Journal of Structural Engineering, 128(4), 526–533. 

 

 

mln(d ) = µln(d ) =
1
N
⋅ ln(di )
i=1

N

∑

θ = md = exp mln(d )( ) = exp 1
N
⋅ ln(di )
i=1

N

∑⎛
⎝⎜

⎞
⎠⎟

β 2 = Var ln(d)[ ] = Var ln d
θ

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
= 1
N −1

⋅ ln di
θ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
2

i=1

N

∑

β = 1
N −1

⋅ ln di
θ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
2

i=1

N

∑


