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Decision Criteria 
The motivation for this document is the need to make decisions under uncertainty. 
Classical examples include a farmer deciding which type of crop to plant, under uncertain 
future weather conditions. Another example is an engineer deciding the dimensions of 
structural members, under uncertain capacity and loads. That engineer may not feel 
uncertain if he/she relies on prescriptive codes that give those numbers, but behind the 
codes are decisions under uncertainty. The theory of decision making under uncertainty 
finds applications in many other endeavours, including finance and the everyday life of 
humans. Documentation of the sometimes amazing and sometimes flawed decision-
making by humans is found in many newspapers and books (Gladwell 2005; Kahneman 
2011). It is also interesting that modern neuroscience is providing new insight into the 
complex processes, perhaps algorithms, that are behind even the simplest of human 
decisions. However, two comments related to the purpose of this document are made: 
1. It is an objective here to recommend decision criteria rather than to mimic how 

humans actually make decisions. The latter often includes the modelling of irrational 
behaviour, which does not seem productive for engineering decisions.  

2. It is an objective to include the consideration of major one-off decisions, such as 
designing a lifeline bridge or betting the farm. Such decisions are made infrequently 
and the impacts if something goes wrong are potentially devastating. 

How Do Humans Make Decisions? 
The answer to that question is not always pleasant. Humans often make decisions 
irrationally, based on emotions, unaware of faulty instincts, and overestimating the 
probability of rare events (Kahneman 2011; Kahneman and Tversky 1979; Tversky and 
Kahneman 1992). On the other hand, it is perhaps wrong to expect humans to act like 
machines, always optimizing based on rational models. In fact, philosophers such as 
Baruch Spinoza (1632-1677) and Arne Næss (1912-2009) have argued that the role of 
emotions is crucial and often undervalued when we talk about “rational” decisions.  
How do engineers, developers, and society make structural design decisions? Usually 
based on formulas in building codes and material standards. Those formulas are handed 
down by code committees and contain prescribed safety coefficients that are applied to 
seemingly deterministic load and resistances values. The safety coefficients are usually 
calibrated to some target reliability index, b, typically above b=3, which implies a failure 
probability below 10–2.87, but rarely above b=4, which implies a 10–4.5 failure probability. 
What those probabilities imply may be unclear but they are meant to match currently 
accepted practice. Experienced engineers often add important cost-benefit considerations 
to the design process, but rarely using optimization algorithms and explicit models. When 
researchers do that they find risk averse or even risk seeking designs compared with the 
rational optimum (Cha and Ellingwood 2012; Mahsuli and Haukaas 2018).  
But what is the “rationally optimal design?” It is the design that maximizes the total 
expected utility, including all costs and benefits, of the facility over its lifetime from 
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material extraction to demolition or deconstruction (von Neumann and Morgenstern 
1944). For example, a hospital should be safer than a one-car garage because the failure 
costs are different. The mantra of expected utility theory is behind much of the material 
posted on this website but it is not universally accepted in structural design, for two 
reasons: 
1. Expected utility theory requires models for many costs and benefits. This is a big 

effort that involves probabilistic modelling. Environmental impacts, cost of injuries, 
and other intangible costs must be quantified. This is a rational approach but still 
awkward for many humans.  

2. All concerns must be translated into a unified measure of utility, i.e. euros or dollars. 
The weight of a particular concern is often debatable. In fact, the utility of a facility 
may vary by stakeholder; a developer may be concerned primarily with profit, while 
members of the general society may be more concerned about economic growth or 
environmental damage. 

Among researchers who pursue the rational optimization approach there is little debate 
about Item 1. Any optimization analysis requires one or more objectives and Item 1 
addresses the modelling of those objectives. Item 2 is sometimes circumvented by the use 
of multi-objective optimization algorithms, avoiding a summation of concerns into one 
utility. However, this is not a rational solution; at some point the different concerns must 
be weighed to arrive at a unique design decision. To understand this, imagine you have to 
choose between two jobs, one with $70,000 salary and 8 weeks of vacation per year, the 
other with $110,000 salary and 2 weeks of vacation. Unless you leave the decision to a 
multi-objective optimization algorithm you must quantify how much vacation time is 
worth to you.  

Expected Cost: Pascal & de Fermat 1654 
In 1654 Blaise Pascal and Pierre de Fermat invented the theory of probability in an 
exchange of letters that is now legendary (Ore 1960). That correspondence also 
formalized a decision criterion that was instinctively understood by gamblers long before: 
over many games it is the expected (average) gain that matters. Loss in one game does 
not matter if there is a net gain over many games. In fact, when inventing the concept of 
probability, Pascal and de Fermat addressed two gambling-related problems. The 
problems were posed by Antoine Gombaud chevalier de Meré, a respectable member of 
society who had nonetheless made certain observations related to gambling (Ore 1960). 
Addressing one of de Meré’s problems, Pascal and de Fermat devised mathematical 
techniques to split the stakes fairly between two gamblers whose multi-game contest is 
disrupted. The solution is to give each gambler the amount that corresponds to their 
expected gain, if the full series of games had been played out. Notice that the frequency 
notion of probability underpins this decision criterion: only by considering the average, 
i.e., the expectation over many completions of the disrupted contest is it possible to 
understand the fraction of the stakes given to each player. This yields a powerful 
rationale for expected cost as a decision criterion: by making the decision that minimizes 
the expected cost the gains are maximized over many decisions. But is this criterion 
sensible for one-off decisions with potentially major negative implications if the 
expectation is not realized? 
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Expected Utility: Daniel Bernoulli 1738 
Expected utility theory implies an extension of expected cost as a decision criterion. It 
does not enjoy the advantage that the gains will be maximized over many decisions. 
However, it addresses an important concern with expected cost: the decision-maker may 
be devastated by negative outcomes before he or she gets to enjoy the gains over many 
decisions. For example, the farmer may go bankrupt the first or second season because of 
bad weather, before accumulating money from good seasons. This issue is referred to as 
risk aversion and the first solution was formulated by Daniel Bernoulli (1738). He did it 
in response to a paradox posed by his cousin Nicolaus Bernoulli, who formulated the 
problem in a letter to Pierre Raymond de Montmort in 1713. Nicolaus described a 
situation where the use of expected cost as a decision criterion gives an unreasonable 
result. Suppose you are offered a game that involves repeatedly tossing a fair coin. Every 
time the coin is tossed there are two possible outcomes: heads and tails. Before starting 
the game, you must pay a fixed amount to participate and there is a pot of money, the 
“stakes,” which you win once the first tail appears. Importantly, the stakes start at $1 and 
double at every coin toss until the first tail appears and you win. As a result, the amount 
you will win is a discrete random variable whose expected (mean) value is what you 
should be willing to pay to enter the game. The possible wins are $1, $2, $4, $8, etc. This 
continues to infinity, although it is unlikely that the game will go on for very long 
without a tail appearing. To compute the expected value of what you will win, the 
probability associated with each possible win is required. With a fair coin, the probability 
of $1 is 0.5. The probability of $2, i.e., the probability of heads in both the first and the 
second throw of the coin, is, assuming independence, 0.52=0.25. In short, the expected 
value of the win is 

  (1) 

In words, the expected cost criterion suggests that you should be willing to pay an infinite 
amount of money to participate in this game. That is likely unreasonable to you because 
there is a 50% chance that you will leave the table with a win of only $1. This is known 
as the St. Petersburg paradox, named after the city where Nicolaus and also Daniel 
Bernoulli were professors for a period of time. The pioneering solution by Daniel 
Bernoulli is to introduce a utility function that expresses the “diminishing marginal 
utility” of money. According to Bernoulli: “There is no doubt that a gain of one thousand 
ducats is more significant to the pauper than to a rich man although both gain the same 
amount.” Bernoulli suggested to use expected utility instead of expected cost as the 
decision criterion. He suggested as utility the natural logarithm of the monetary value. 
This relationship between money and utility is shown in Figure 1 as what is now known 
as a “utility function” or “Bernoulli function.” The expected utility of the game is 

  (2) 

with corresponding dollar value e0.693=$2. For most people that is a more reasonable fee 
to enter the game. 
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Figure 1: Daniel Bernoulli’s logarithmic utility function. 

Expected Utility: von Neumann & Morgenstern 1944 
After Daniel Bernoulli’s publication of a utility function in 1738 it took 200 years until 
the next blossom in that field. The start of the second spring is marked by the publication 
of a book by the economist Oskar Morgenstern and the mathematician John von 
Neumann. In that book the axioms and mathematical foundation of utility theory were 
established in the context of economics (von Neumann and Morgenstern 1944). The 
treatment by von Neumann and Morgenstern is quite mathematical, but several 
subsequent works elucidate the approach (Benjamin and Cornell 1970; Jordaan 2005; 
Raïffa and Schlaifer 2000; Wald 1950). A key issue in utility theory is to model the 
decision maker’s risk aversion in terms of utility functions, such as Bernoulli’s function 
shown in Figure 1. To establish a decision maker’s utility function it is helpful to think of 
the “basic reference lottery tickets” described in Section 4.4.1 in the book by Jordaan 
(2005). This approach follows the idea in Section 3.3.2 of von Neumann and 
Morgenstern (1944) to let a decision maker express a preference between an outcome A 
and a lottery with possible outcomes B and C. In his book, Jordaan (2005) also cites 
Raiffa (1968) to be the first to formalize the following lottery question:  

Suppose you face a decision problem in which the worst possible 
outcome is denoted W and the best possible outcome is denoted B. 
At a specific dollar amount, D, whose value is between W and B 
you are asked the following question: 
Suppose you are offered D in cash with no strings attached. At 
which probability, u, would you be willing to NOT take D but 
rather enter into a lottery with probability u of winning B and 
probability 1–u of getting the worst outcome, W. 

The value of u is the utility associated with the dollar amount D. 
Depending on the magnitude of the potential loss W, many people will require a high 
value of u, i.e., a high probability of winning B, before entering into the lottery. As a 
result, the utility function is usually concave, such as the one shown in blue in Figure 2. 
Conversely, people who have a propensity for gambling will cherish the excitement of 
entering into any lottery with the possibility of winning W. Hence, the gambler’s answers 
will form a convex curve like the one shown in red in Figure 2. Importantly, the utility 
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functions are subjective; a specific amount of money may have different utility for 
different people. A linear function, shown in black in Figure 2, implies that that money 
and utility are interchangeable, meaning that the decision is based on expected cost. That 
is the sensible approach for a decision-maker with a deep pocket facing many decisions: 
using expected cost as decision criterion maximises the benefits over time. 

 
Figure 2: Utility functions. 

Critiques of Expected Utility Theory 
Compared with expected cost as decision criterion, expected utility introduces risk 
aversion to help decision makers who may go under if the worst possible loss is realized. 
The downside is that the choies are no longer optimal over many decisions. Large 
resources may be unnecessarily committed to ensuring a safe outcome. That is the 
fundamental trade-off when applying expected utility theory, but several other issues 
have been raised:  

• Tversky and Kahneman carried out pioneering studies to determine the actual 
behaviour of people facing decisions under uncertainty (Kahneman 2011). They 
found that people overestimate the probability of rare but devastating outcomes. They 
also found that the perceived utility of gains and losses are often related to some 
intermediate reference value, rather than W and B mentioned above. Tversky and 
Kahneman developed “prospect theory” to remedy those shortcomings of utility 
theory, and another document on this website describes some aspects of that theory. 
However, the modelling of people’s sometimes irrational behaviour is not further 
pursued here, where the objective is to recommend rational engineering decisions. 

• Another critique of utility theory is the difficulties associated with extracting the 
decision maker’s “true” utility function (Friedman et al. 2014). An infinite space of 
curves is available, but there is limited evidence that any one utility function is the 
objectively true one for any given decision maker. 
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• Utility theory necessitates the mapping of various concerns onto one common axis 
with units of dollars or some other generic measure of utility. To some, this is a 
disadvantage because real-world decisions have multiple and often contradictory 
objectives. However, two comments may alleviate this concern. First, for those who 
say that real-world decisions under risk can only be made through a process of 
comprehensive and complex stakeholder engagements, with lengthy meetings where 
all involved parties get to express their thoughts and concern, then technical decision 
criteria will invariably play a secondary role. Second, even multi-objective decision 
techniques require the weighing of different concern, conceptually equivalent to the 
mapping of different concerns into one common axis with units of dollars or some 
other generic measure of utility. 

Problem Types 
Different problem types appear within the framework of expected utility theory. In the 
following it is assumed, without loss of generality, that cost is the measure of utility. 
Hence, the key tasks are to evaluate and minimize the expected cost. Which techniques to 
employ for this purpose depend on 1) characteristics of the intervening design variables, 
2) characteristics of the cost, and 3) whether the option of purchasing perfect or imperfect 
data is available. Table 1 suggests one way of categorizing the problems, together with 
the name of respective solution techniques, which are described in the subsequent 
sections.  

Table 1: Types of decision problems under uncertainty. 

 
Discrete cost 

Continuous cost 

 With limit-states No limit-states 

Discrete design variables Decision trees - - 

Continuous design variables - RBDO Using the mean 

Decision Trees 
With discrete design variables and discrete cost the methodology presented in Raiffa and 
Schlaifer (2000) and Benjamin and Cornell (Benjamin and Cornell 1970) is applicable. 
The decision alternatives are called actions and denoted Ai. Each action is associated with 
a cost, c(Ai). The possible outcomes are denoted qj and each outcome is associated with a 
cost, c(qj|Ai), and a probability of occurrence, P(qj). Before drawing the decision tree it is 
necessary to: 

1. Enumerate the decision alternatives, Ai 
2. Compute the cost of each decision alternative, c(Ai) 
3. Enumerate the possible outcomes, qj 
4. Assess the cost of each outcome, c(qj|Ai); often organized in a “payoff table” that 

often includes c(Ai) 
5. Compute the probability of each outcome, P(qj) 
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The objective of the decision tree analysis is to identify the action with lowest expected 
cost. Or conversely, if the cost values are translated into utility values the objective is to 
identify the action with highest expected utility. The setup of a decision tree to determine 
the expected cost of each action is shown in Figure 3. The starting point is the left-most 
decision fork, which is drawn as a rectangle. Each action branch ends at a chance fork, 
which is drawn as a circle. As illustrated in Figure 3, the expected cost of each action 
branch is 

  (3) 

where J is the total number of outcomes. The action with the lowest expected cost, or 
equivalently the one with highest expected utility, is the optimal decision. However, two 
other decision strategies exist: 1) Minimize the maximum cost, which may be selected by 
a risk-averse decision maker in one-off situations; 2) Maximize the possible benefit, 
which may be selected by a gambling-inclined decision maker. 

 
Figure 3: Decision tree. 

Terminal Analysis 
Terminal analysis extends the decision tree in circumstances when new information 
becomes available. The information is not conclusive; otherwise the decision would be 
easy. Rather, the information is associated with some uncertainty. The typical example is 
test data obtained with an imperfect device, from which the probability of various 
outcomes is provided as “sample likelihoods,” i.e., in the conditional form 
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  (4) 

where Ik is the indicator value from the test device and qj is the real state.  For each j, i.e., 
for each possible real state, the following condition must be satisfied: 

  (5) 

where K is the number of possible test indicator values. The key step in terminal analysis 
is to use the test probabilities in Eq. (4) to update the outcome probabilities in the 
decision tree. I.e., the objective is to compute the probabilities P[qj|Ik]. Notice that the 
outcome probabilities are dependent on the indicator value from the test device; for each 
indicator value there will be a unique decision tree, as shown in Figure 4. The new 
indicator-dependent outcome probabilities are computed by Bayes’ rule: 

  (6) 

For each indicator branch in Figure 4 a basic decision tree is drawn, with outcome 
probabilities from Eq. (6). That is, for each indicator value there will be an optimal 
decision that should be made if that indicator value is observed. 

 
Figure 4: Decision tree for terminal analysis. 
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Pre-posterior Analysis 
Now consider the problem of deciding whether to purchase test information. Two 
situations arise; the information may be perfect or associated with uncertainty. Consider 
first the case of perfect test information. The expected cost in a situation where the test 
removes all uncertainty about the outcome, albeit excluding the cost of the test itself, is 

  (7) 

where J is the number of possible outcomes (remember, the test device is perfect) and Aoj 
is the obvious decision once qj is the known outcome. Eq. (7) states that the expected cost 
in a perfect-test situation is the sum of the probability of each possible outcome 
multiplied by the certain cost of the action that is obvious once that outcome is known. 
To determine whether it is cost-effective to purchase the test, the expected cost in Eq. (7) 
is compared with the expected cost of the optimal decision in the classical decision tree in 
Figure 3. The expected cost in Eq. (7) is lower and the discrepancy is the saving 
associated with having perfect test information. It is expected to be cost-effective to 
purchase the test if the purchase-cost does not exceed this saving. Another type of pre-
posterior analysis arises when deciding whether to pay for imperfect information. Then, 
the probability for the possible test results (indicator values) are computed by the rule of 
total probability: 

  (8) 

Each of these probabilities, P[Ik], is multiplied by the expected cost of the optimal 
decision that follows the test result Ik, which is available from a terminal analysis shown 
in Figure 4. The complete pre-posterior decision tree for this situation is shown in Figure 
5. Summation of these products yields the expected cost in the situation where we have 
help from an imperfect test device. This value is compared with the expected cost of the 
optimal decision in the classical decision tree in Figure 3. The discrepancy is the saving 
associated with performing and imperfect test. It is expected to be cost-effective to 
purchase the test if the purchase-cost does not exceed this saving.  
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Figure 5: Decision tree for pre-posterior analysis with the option of selecting imperfect test. 

Reliability-based Design Optimization (RBDO) 
Reliability is defined as unity minus the failure probability, limit-state function(s) 
defining failure. Hence, the label reliability-based implies that one or more failure 
probabilities are involved in the problem formulation. For these problems it is possible to 
imagine discrete design variables and even discrete costs, but the concepts are here 
explained with continuous variables and continuous costs. The typical formulation of 
expected cost is 

  (9) 

where c0 is the expected cost of construction, x are the design variables, cf is the expected 
cost of failure, and pf is the probability of failure. Figure 6 schematically identifies the 
optimal design for the case of one design variable based on the minimization of the 
expected cost. As a conceptual illustration, the figure indicates an increasing construction 
cost due to increasing design variable value, and a decreasing expected cost of failure due 
to decreasing failure probability as the design variable value increases. The sum of both, 
which is the total expected cost, is a curve with a unique minimum. This point represents 
the optimum design and thereby the optimum failure probability.  
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E[c]= c0 (x)+ cf ⋅ pf (x)
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Figure 6: Schematic illustration of reliability-based design optimization. 

When constraints on the failure probability and the design variables are included, the 
reliability-based design optimization problem reads 

  (10) 

where the asterisk identifies the optimal design. The first constraint expresses the 
requirement that the failure probability is less than the threshold p0. However, one may 
argue that for the reliability-based optimization problem in Eq. (10) it is unnecessary to 
include a probability constraint. This is because the cost of failure is already included in 
the objective function. If the cost of failure is properly modelled, including the potential 
for human injury and other intangible costs, then the optimization analysis will provide 
the “best” target safety, without the need for explicit constraints. The optimal failure 
probability will then come out high for a garage, which has a low cost of failure, while it 
will come out low for a hospital.  

Using the Mean 
Consider a problem where the outcome is a continuous random variable. Performance-
based earthquake engineering is one example; there, are key result is the probability 
distribution for cost, including repair of potential future damage (Cornell and Krawinkler 
2000; Haukaas 2008; Yang et al. 2009). These problems can be formulated without limit-
state functions, and conceptually the problem is now simpler than the one shown in Eq. 
(10) and Figure 6. The total cost has many contributions and is essentially a continuous 
random variable, whose possible distributions are schematically shown in Figure 7. 
According to the expected cost mantra, the optimal design is that which minimizes the 
mean of that random variable. The left-hand side of Figure 7 shows two cost distributions 
with identical expected cost but differing variance. Design 1 can be thought of as a well-
tested concept, while Design 2 is a more experimental design with larger uncertainty in 
its performance. Using expected cost as a decision criterion there is no preference 
between Design 1 and Design 2, although Design 2 is associated with a higher probability 

Design variable, x
Optimum

pf (x) ⋅ cf

c0 (x)
c0 (x)+ pf (x) ⋅cf

Cost

x* = argmin c0 (x)+ cf ⋅ pf (x)  pf (x)− p0( ) ≤ 0,    f(x) ≤ 0{ }
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of sustaining a realization with large cost. The right-hand side of below shows a third 
design option with higher expected benefit but also higher variance. Paradoxically to 
some, the expected cost mantra favours Design 3 although the probability of seeing high 
cost realizations is larger than with Design 1. This highlights a key aspect in expected 
cost/utility decisions: the strategy is optimal over many decisions as long as the decision 
maker can handle intermediate intermittent realizations of large costs. 

 
Figure 7: Schematic probability distributions of total cost. 

Realizations of the random variable whose probability distributions are sketched in 
Figure 7 are calculated with many models that use many random variables and many 
design variables (Mahsuli and Haukaas 2013a; b; Yang et al. 2009). This implies that no 
standard distribution type is available, and that it is analytically and computationally 
prohibitive to establish the full and exact distribution. Thankfully, to carry out expected 
cost optimization, only the mean value is needed and this can be estimated in several 
ways: 

• Monte Carlo sampling 
• First-order second-moment Taylor approximation (gradient available) 
• Second-order second-moment Taylor approximation (gradient available if response-

Hessian is available) 
• First-order reliability method at a grid of cost thresholds (gradient available) 
• Response expansion methods 
• Dimension reduction techniques 

Prospect Theory 
Prospect theory was developed as a descriptive model of how humans make decisions, 
based data collected in questionnaires (Kahneman 2011; Kahneman and Tversky 1979). 
A simplistic way of viewing prospect theory is as an extension of expected utility theory. 
In the same way as utility theory adds the concept of nonlinear utility to expected cost 
theory, prospect theory adds moving parts to utility theory. However, prospect theory has 
fundamental differences with utility theory, and perhaps a better perspective is that 
prospect theory is a psychology-based description of how actual decisions are made, 
rather than a foundation for rational engineering decisions. Regardless, important lessons 
about loss aversion can be learned from applying prospect theory in an engineering 
context.  
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The key concepts in prospect theory are a reference point and aversion to losses from that 
reference point. For most decision-makers, the reference point changes from decision to 
decision. For example, experiencing a success shifts the reference point for the next 
decision. Prospect theory postulates that decisions are made based on changes in wealth 
relative to the reference point. While losses and gains in utility theory are measured by 
going from point to point on the utility curve, prospect theory allows different utilities to 
be assigned to a loss and a win, even when the loss and the win are of equal nominal 
value. In other words, prospect theory focuses on changes in utility rather than particular 
states of utility. Figure 3 epitomizes prospect theory and shows how the same amount lost 
generates a stronger negative experience than the positive experience of winning the 
same amount. 

 
Figure 8: Value function in prospect theory (Kahneman 2011). 

In utility theory, the expected utility is  
  (11) 

where pi are probabilities, ui are outcome utilities, and p1+p2+…+pn=1. In prospect 
theory, the probabilities are replaced by decision weights p(p) and the utilities are 
replaced by values n(u) defined relative to a reference point (Kahneman and Tversky 
1979). Figure 3 shows a schematic example of a value function and Figure 9 shows a 
schematic example of a weighing function. The decision weights, p, need not add to 
unity, and the prospect value 

  (12) 

can be interpreted as a relaxation of the expectation principle of utility theory. 
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200 
-100 -200 

 E[u]= p1 ⋅u1 + p2 ⋅u2 ++ pn ⋅un

 V = π (p1) ⋅ν(u1)+π (p2 ) ⋅ν(u2 )++π (pn ) ⋅ν(un )



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Decision Criteria Updated January 10, 2020 Page 14 

 
Figure 9: Weighting function (solid line) in prospect theory (Kahneman and Tversky 1979). 

An extension of the theory outlined above is called cumulative prospect theory (Tversky 
and Kahneman 1992). This decision-making model has been employed to seismic risk 
problems (Goda and Hong 2008) and to general infrastructure exposed to low-probability 
high-consequence events (Cha and Ellingwood 2012).  

The Life Quality Index 
The LQI (life quality index) is an index that measures incremental changes in the health 
and safety of a population. If money spent on an infrastructure project yields an increase 
in the LQI then the resource allocation is meaningful, otherwise not. Although the LQI is 
philosophically interesting and has received significant attention in the structural 
reliability community, the translation into effective decision-making for individual 
structures remains an interesting challenge. Another challenge is that the benefit to 
society of human actions can arguably be measured in different ways. For example, 
reduction in the cumulative pain and suffering that individuals in a population 
experiences may be another indicator that should drive societal research allocation 
(Kahneman 2011). Thus, in the following derivations one should be mindful of the 
complexities associated with estimating what constitutes improvement in life quality. In 
fact, other documents on this website focus on direct consequence modelling and 
minimization of total cost or some other direct measure of utility. 
Several research groups have contributed to the development of the LQI. The group 
centered at the University of Waterloo in Canada introduced the index in a seminal book 
(Nathwani et al. 1997) that was later revised and expanded (Nathwani et al. 2009). The 
same researchers discussed a broader set of economic risk acceptance criteria (Lind 2002) 
and provided a derivation of the LQI economic principles (Pandey et al. 2006). The 
Canadian group also introduced the SWTP concept, i.e., the societal willingness to pay 

Probability, p 

Decision weight, π(p) 

1 

0 1 
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(Pandey and Nathwani 2004). Research led by Professor Rackwitz at the Technical 
University of Munich applied the LQI in reliability-based optimal design (Rackwitz 
2002). This group also addressed the influence of discounting and other factors 
(Rackwitz 2006), and applied the LQI to aging infrastructure (Rackwitz and Joanni 2009) 
and seismic risk mitigation (Sánchez-Silva and Rackwitz 2004). Research at the 
Technical University of Danmark led by Professor Ditlevsen discussed the LQI in the 
concext of decision-making under uncertainty (Ditlevsen 2003) and provided revisions of 
the original formulation (Ditlevsen 2004) that became a subject of debate (Rackwitz 
2005). The Danish group also introduced the “life quality time allocation index” 
(Ditlevsen and Friis-Hansen 2005) and they provided a discussion of the Canadian 
research group’s derivation of the LQI from economic principles (Ditlevsen and Friis-
Hansen 2008).  
The two key ingredients of the LQI are: 1) the life expectancy at birth, e, and 2) the real 
gross domestic product per person, g. The intensity of life quality is quantified by a 
function f(g), and the duration of the good life is introduced by a function h(t), where 
t=(1-w)e is the time spent enjoying life, where w is the fraction of life spent in production 
of g rather than life enjoyment. The compound measure of life quality is 
  (1) 

The change in L, measured by the differential is, using the product rule of differentiation: 

  (2) 

Normalizing by L yields: 

  (3) 

Multiplying the first term by g/g and the second term by t/t, defining the constants k1 and 
k2, and realizing that dt/t equals de/e yields: 

  (4) 

The constants k1 and k2 quantify the relative impact of increasing g, i.e., improving the 
intensity of life enjoyment, and the life expectancy, e, i.e., the duration of life enjoyment. 
Assuming that the ratio k1/k2 remains constant implies that k1 and k2 are constants, which 
leads to the two equations: 
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  (5) 

These differential equations can be written in the following form: 

  (6) 

These are ordinary linear homogeneous differential equations with variable coefficients. 
The general solution to such equations is described in a math document on this website, 
and the specific solutions are: 

  (7) 

In the product f(g)h(t) the constants C1 and C2 are irrelevant, and renaming k1 and k2 
yields (Nathwani et al. 1997): 

  (8) 

so that the LQI in Eq. (1) takes the form: 

  (9) 

To obtain expressions for q and s it is postulated that the gross domestic product is 
proportional to the time spent in production. I.e., g=we so that 

  (10) 

Assuming that L is in practice maximized by people balancing their time producing g and 
their leisure time, i.e., assuming that people live at the optimal fraction w yields: 

  (11) 

The solution to Eq. (11) is  

  (12) 

Setting q=w and s=1-w satisfies Eq. (12). Substitution of these values into Eq. (9) yields: 

  (13) 

The last factor is practically constant, leading to the following expression for the LQI: 
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  (14) 
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