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Code Calibration 
Structural design is decision-making under uncertainty. Loads and capacities are 
invariably uncertain. However, current practice rarely employs explicit cost-benefit 
considerations to determine the design and, hence, the safety of the structure. Instead, the 
common practice is to set forth “design equations” in building codes and material 
standards with safety coefficients calibrated to past accepted practice. When a new code 
is in the making, a code committee often attempts to determine the reliability index 
implied by past practice, which forms the “target reliability” for future design equations. 
The act of determining the safety coefficients that meet the target reliability is called code 
calibration. 

Design Equations Vs. Limit-state Functions 
Consider the basic reliability problem, which is expressed in terms of the two random 
variables R and S, representing the capacity and demand, respectively, and the limit-state 
function 
  (1) 

The design equation associated with that limit-state function is 
  (2) 

where f=safety coefficient applied to the capacity, Rk=characteristic value of the 
capacity, g=safety coefficient applied to the load, and Sk=characteristic value of the load. 
f and g are called “partial safety coefficients” because different safety coefficients are 
applied to capacities and loads. Typical values satisfy the inequalities f <1 and g >1. The 
characteristic values of R and S could be the mean values of those random variables, but 
typically more conservative values are used. Specifically, the load-value that has a 5% 
chance of being exceeded and the capacity value that has a 5% chance of being 
subceeded are often used. 

Code Calibration for the Basic Reliability Problem 
In the context of the basic reliability problem, code calibration implies determining the 
values of f and g in Eq. (2) that yields the desired reliability index value. Professor Niels 
Lind presented a solution to this problem in the late 1960s. The first step in the derivation 
is to express the characteristic value of the capacity as 
  (3) 

and similarly, for the load: 
  (4) 

For the Normal distribution it turns out that kR = kS = 1.64. Next, two ratios are defined 
for future reference; namely, the “characteristic safety factor” 

g = R − S

φ ⋅Rk = γ ⋅Sk

Rk = µR − kR ⋅σ R = µR − kR ⋅δ R ⋅µR = µR ⋅(1− kR ⋅δ R )

Sk = µS ⋅(1+ kS ⋅δ S )
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  (5) 

and the “central safety factor” 

  (6) 

Having established those concepts, the reliability index for the basic reliability problem is 
calculated by the MVFOSM approach, assuming that R and S are independent: 

  (7) 

To approach an analytical solution to this code calibration problem, Professor Lind made 
the following approximation: 

  (8) 

with a=0.75, which is a fairly accurate assumption so long as the values of sR and sS do 
not differ too much. With that approximation, the reliability index is rewritten as 

  (9) 

Dividing through by µS yields 

  (10) 

Solving for the central safety factor yields 

  (11) 

Now consider the characteristic safety factor, where the central safety factor actually 
appears once Eqs. (3) and (4) have been substituted: 

  (12) 

Substitution of Eq. (11) yields 

  (13) 

Finally, recognizing that lk=Rk/Sk, Eq. (13) is rearranged to match the format of Eq. (2): 

  (14) 

λk =
Rk
Sk

λo =
µR

µS

β =
µg

σ g

= µR − µS

σ R
2 +σ S

2

σ g = σ R
2 +σ S

2 ≈α ⋅ σ R +σ S( )

β = µR − µS

α ⋅ σ R +σ S( )     ⇒     µR − µS = β ⋅α ⋅ σ R +σ S( )

µR

µS

−1= β ⋅α ⋅ δ R ⋅µR

µS

+ δ S ⋅µS

µS

⎛
⎝⎜

⎞
⎠⎟

    ⇒     λo −1= β ⋅α ⋅ δ R ⋅λo +δ S( )

λo =
1+ β ⋅α ⋅δ S

1− β ⋅α ⋅δ R

λk =
µR ⋅(1− kR ⋅δ R )
µS ⋅(1+ kS ⋅δ S )

= λo ⋅
(1− kR ⋅δ R )
(1+ kS ⋅δ S )

λk =
1+ β ⋅α ⋅δ S( )
1− β ⋅α ⋅δ R( ) ⋅

1− kR ⋅δ R( )
1+ kS ⋅δ S( )

1− β ⋅α ⋅δ R( )
1− kR ⋅δ R( )

φ
! "## $##

⋅Rk =
1+ β ⋅α ⋅δ S( )
1+ kS ⋅δ S( )

γ
! "## $##

⋅Sk
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Eq. (14) is the sought link between the value of f and g in Eq. (2) and value of the 
reliability index, b. 

Geometry Link 
The fundamental problem in code calibration is to link the design equation, such as the 
one in Eq. (2) with the limit-state function, such as the one in Eq. (1). Analytical 
solutions to that challenge may not exist. However, in certain situations there may exist 
deterministic geometry parameters that appear in both equations, facilitating an analytical 
combination. As a conceptual example, consider a problem with two loads and one 
capacity, e.g., a simply supported beam subjected to dead load and live load. The design 
equation employed by the engineer to check the bending moment capacity is  

  (15) 

Assuming the bending moment capacity can be calculated from a yield stress, fy, and that 
the loads, qDead and qLive, are uniformly distributed, Eq. (15) is rewritten as 

  (16) 

The corresponding limit-state function is 

  (17) 

where fy, qDead, and qLive are random variables. Solving Eq. (16) for the geometry 
parameter I and substituting it into Eq. (17) yields 

  (18) 

Terms without any random variable can be cancelled without changing the failure 
probability; hence, the limit-state function is simplified to 

  (19) 

Eq. (19) is a limit-state function that contains the safety coefficients of the design 
equation. As a result, it can be used directly for code calibration, following this 
procedure: 

1. Obtain probabilistic information about the random variables 
2. Set a target reliability 
3. Iterate: 

a. Select trial values for the safety coefficients 
b. Carry out the reliability analysis with the limit-state function in Eq. (19) 
c. Compare the reliability index to the target reliability 

φ ⋅MCapacity = γ DeadMDead + γ LiveMLive
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d. Try different values for the safety coefficients, because there is no unique 
solution 

Real-world Code Calibration 
Yet to be written. 
 

 


