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Functions and Transformations 
The premise in this document is a set of continuous random variables, y, that has some 
functional relationship with on another set of continuous random variables, x. It is 
possible that they are single random variables, y and x, and the situation y and x is also 
possible. Regardless, two questions may arise: 

• If we know the functional relations ship between x and y, and we know the 
probability distributions or at least partial descriptors for x, what is the distribution of 
y? This is called “analysis of functions” of random variables. 

• If we know the probability distribution for x and y, what is the functional relationship 
between them? We call this “probability transformations.”  

Analysis of Functions 
First, consider one function, Y, which is a function, h(X), of n random variables, X. Also 
assume for now that we have only second-moment information, i.e., mean, variance, and 
correlation, and that the second-moment information for Y is sought. To solve this 
problem, the expectation operator is vital. It is defined as 

  (1) 

Expectation is a linear operator, having the properties 

  (2) 

In passing it is noted that the variance, which is the expectation of (X-µX)2 has the 
properties 

  (3) 

Some of these properties are useful to determine the mean and variance of Y. Consider 
first a linear function, where Y=h(X) is written, in vector and index notation: 

  (4) 

where a is a constant and b is a vector of constants. The expectation of Eq. (4) is 
conveniently carried out in index notation: 

  (5) 

E[Y ] = E[h(X)] =  h(x1, x2 ,, xn ) f (x1, x2 ,, xn )dx1 dx2dxn
−∞

∞

∫
−∞

∞

∫

E[a] = a
E[a ⋅h(X)] = a ⋅E[h(X)]

E[h1(X) + h2 (X)] = E[h1(X)]+ E[h2 (X)]
∂
∂θ
E[h(X,θ)] = E[ ∂

∂θ
h(X,θ)]

Var[a + X] = Var[X]
Var[b ⋅ X] = b2 ⋅Var[X]

Y = a + bTX = a + biXi

µY = E[Y ] = a + bi ⋅E[Xi ] = a + b
TMX
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Essentially, the mean of the function is obtained by substituting the means for the random 
variables.  

The variance of the linear function in Eq. (4) is also derived in index notation: 

  (6) 

Similarly, one can also find the covariance between two different linear functions, 
Y1=a+bTX and Y2=c+dTX: 

  (7) 

One may attempt to derive exact analytical second-moment expressions also for non-
linear functions. However, depending on the complexity of the function, this may not be 
possible. In that case, one option is to approximate the function(s) by a Taylor expansion 
about the mean. Keeping the first two terms of the expansion yields the linearized 
approximation  

  (8) 

where, from mathematics, we know that Ñh(MX) is the gradient vector of the function, 
evaluated at the mean. According to the earlier derivations, the linearization in Eq. (8) 
yields the following second-moment results: 
  (9) 

  (10) 

  (11) 

Obtaining Full Distributions 
Reconsider the situation in which a dependent random variable, Y, is related by a known 
functional relationship to one or more independent random variables, X. In this section 
the entire probability distribution for Y is sought, not only second-moment information. 
This is referred to as finding the “derived distribution.” First consider the case of a 

σ Y
2 = E Y − µY( )2⎡

⎣
⎤
⎦

= E a + biXi( )− a + bjµ j( )( )2⎡
⎣⎢

⎤
⎦⎥

= E biXi − bjµ j( )2⎡
⎣⎢

⎤
⎦⎥

= E biXi − bjµ j( ) ⋅ bkXk − blµl( )⎡⎣ ⎤⎦
= E biXi ⋅bkXk − biXi ⋅blµl − bjµ j ⋅bkXk + bjµ j ⋅blµl⎡⎣ ⎤⎦
= E biXi ⋅bkXk[ ]− E biXi ⋅blµl[ ]− E bjµ j ⋅bkXk⎡⎣ ⎤⎦ + E bjµ j ⋅blµl⎡⎣ ⎤⎦
= bibk ⋅E XiXk[ ]− bjbl ⋅µ jµl

= bibk ⋅Cov XiXk[ ]
= bTΣ XXb

Cov Y1,Y2[ ]= E Y1 − µY1( ) Y2 − µY2( )⎡⎣ ⎤⎦ = b
TΣ XXd

Y = h(X) ≈ h(MX ) +∇h(MX )
T (X −MX )

µY = h(MX )

σY
2 = ∇h(MX )

T Σ XX∇h(MX )

Cov[Y1,Y2 ] = ∇h1(MX )
T Σ XX∇h2 (MX )
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continuous random variable, Y, related to another continuous random variable, X, by the 
functional relationship: 

  (12) 

where h is a monotonically increasing function so that there exists a one-to-one mapping 
between realizations of x and y. This relationship is shown schematically by the solid line 
in Figure 1. To obtain the probability distribution for Y when the distribution for X is 
known, one starting point is the definition for the CDF for Y: 

  (13) 

Substituting Eq. (12) into Eq. (13) yields 

  (14) 

The probability distribution for X is known, while the distribution for Y is sought. The 
“probability preserving” transformation yields the sought CDF:   

  (15) 

That equation is differentiated to obtain the PDF for Y: 

  (16) 

Rearranging yields 

  (17) 

This equality is visualized by shaded areas in Figure 1.   

 
Figure 1: Derived distribution. 

Y = h(X )

FY ( y) = P(Y ≤ y)

FY ( y) = P(h(X ) ≤ y)

FY ( y) = FX (x) = FX h
−1( y)( )

fY (y) =
dFY (y)
dy

= dx
dy

⋅ dFX (x)
dx

= dx
dy

⋅ fX (x) =
dx
dy

⋅ fX (h
−1(y))

fY (y) ⋅dy = fX (x) ⋅dx

x 

y 

dx 

dy 

fX(x) 

fY(y) 

fX(x) dx 

fY(y) dy 
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In the multi-variate case, depending on the distributions of the independent random 
variables, X, and the functional relationship with Y there may not exist an analytical 
expression for the distribution of Y. However, the following equality holds: 
  (18) 

which by rearranging is written in terms of the Jacobian determinant: 

  (19) 

Note, however, that certain special cases are available: A linear function of normal 
random variables is always normal. A product function of lognormal random variables is 
always lognormal. 

Probability Transformations 
Some of this material was first described to me in a course taught by Professor Armen 
Der Kiureghian at the University of California at Berkeley. In 2005 he made a concise 
description available in Chapter 14 “First- and second-order reliability methods” of the 
CRC Engineering Design Reliability Handbook edited by Nikolaidis, Ghiocel and 
Singhal, published by the CRC Press in Boca Raton, Florida. 
This document seeks to determine the functional relationship between two random 
variables—or two vectors of random variables—given knowledge about both probability 
distributions. As an illustration, consider a random variable X, which is associated some 
known marginal probability distribution. The transformation to a random variable Y, 
which has, say, the standard normal distribution, is sought. More generally, the aim is to 
transform the vector of random variables, X, with known probability distribution, into a 
vector of random of random variables, Y, also with prescribed probability distribution. 
Again, the objective is to determine the functional relationship between X and Y. 
Another document on analysis of functions addresses the problem of finding the 
unknown probability distribution of Y or Y when the functional relationship is known.  

Transformation of One Random Variable 
It is both pedagogically and practically useful to first consider single-variable 
transformations. Consider a random variable X with CDF FX(x). Suppose a 
transformation to the random variable Y is sought. First, consider the problem where the 
target distribution for Y is known. In fact, let Y be a random variable with CDF FY(y). 
That is, both FX and FY are known. To establish the transformation, which is referred to 
as the “probability-preserving transformation,” the two CDFs are equated:  
  (20) 

This states that the probability mass at values below the equivalent thresholds x and y 
must be equal. As a result, y is written 

  (21) 

and x is written 

 fY (y1, y2,, yn )dy1dy2dyn = fX (x1, x2,, xn )dx1dx2dxn

fY (y1, y2 ,, yn ) = fX (x1, x2 ,, xn ) det(Jy,x )
−1

FX (x) = FY (y)

y = FY
−1 FX (x)( )
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  (22) 

where F-1 denotes the inverse CDF. As an example, consider a value y generated by a 
random number generator according to the standard normal probability distribution, 
whose CDF is denoted F(y). To transform that realization into a random variable x with, 
say, the uniform probability distribution, whose CDF is written F(x), the following 
calculation is carried out: 

  (23) 

The transformation that is established in Eq. (20) is extensively utilized in reliability 
analysis to transform a random variable with some distribution into a standard normal 
variable.  

Standardization of Second-Moment Vector 
Let x denote the realization of a vector of random variables with means MX and 
covariance matrix SXX. The objective in this section is to transform X into a vector Y of 
the same number of random variables with zero means and unit covariance matrix. I.e., Y 
is a vector of uncorrelated and “standardized” random variables. Some readers will 
perhaps recall from elementary statistics courses that for the case of one random variable, 
the relationship is: 

  (24) 

where µ is the mean and s is the standard deviation. In general, a second-moment 
transformation is written 
  (25) 

were the vector a and the square matrix B contain unknown constants. Eq. (25) represent 
linear functions of random variables, and we seek a and B. Thus, according to “analysis 
of functions,” two equations for the unknowns a and B are established by enforcing zero 
means and unit covariance matrix for y: 

  (26) 

  (27) 

B is the only unknown in Eq. (27). Multiplying through by B-1 from the left and B-T from 
the right yields the following expression for the covariance matrix of X: 

  (28) 

Hence, the unknown matrix B-1 is the one that decomposes SXX into a matrix multiplied 
by its transpose. This is known as the Cholesky decomposition: 

  (29) 

where a tilde identifies the lower-triangular Cholesky decomposition of the covariance 
matrix. The tilde will later be removed to identify the Cholesky decomposition of the 
correlation matrix. Comparing Eqs. (28) and (29) one finds that 

x = FX
−1 FY (y)( )

x = F−1 Φ(y)( )

 
y = x − µ

σ

 y = a +Bx

MY = a + BMX = 0

  ΣYY = BΣ XXBT = I

Σ XX = B−1B−T

Σ XX = L LT
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  (30) 

which, substituted into Eq. (26), yields 

  (31) 

Thus, the sought standardization transformation reads 

  (32) 

Solving for x yields the transformation back to the original vector: 

  (33) 

The Cholesky decomposition in Eq. (29) may be difficult because the covariance matrix 
contains components with dimensions associated with the dimensions of the random 
variables. In other words, it may contain numbers with different orders of magnitude. 
Therefore it is often more accurate to decompose the dimensionless correlation matrix. 
For this purpose, the covariance matrix is written 

  (34) 

where DX is a diagonal matrix with standard deviations on the diagonal and L is the 
Cholesky decomposition of the correlation matrix. According to the derivations above, 
the standardization transformation now reads 

  (35) 

When probability transformations like the one in Eq. (25) is applied in reliability analysis 
it is often necessary to also compute the Jacobian matrix associated with the 
transformation. In other words, the derivative of y with respect to x, or its inverse, is 
sought. For the second-moment transformation outlined in this section it is obtained by 
differentiating the expression for y: 

  (36)  

Transformation of Independent Random Variables 
The previous derivations are now extended to cases where the entire probability 
distribution of the random variables, X, is known. For now, suppose they are 
uncorrelated. As a result, the joint PDF is the product of the marginal PDFs. In this case, 
the probability preserving transformation in Eq. (20) is applied to each random variable at 
a time. In particular, the transformation into standard normal random variables is sought 
in reliability analysis: 

  (37) 

where Fi is the CDF of random variable number i. The Jacobian matrix for this 
transformation is obtained by differentiating the left-most equation in Eq. (37) with 
respect to xi: 

B = L−1

a = − L−1MX

y = L−1 x −MX( )

x =MX + Ly

Σ XX = DXRXXDX = DXLL
TDX

y = L−1DX
−1 x −MX( )          ⇔          x =MX + DXLy

Jy,x ≡
∂y
∂x

= L−1 = L−1DX
−1

Fi (xi ) = Φ(yi )     ⇔      yi = Φ−1 Fi (xi )( )      ⇔      xi = Fi
−1 Φ(yi )( )
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  (38) 

where f and  are the PDFs corresponding to F and F, respectively. As a result, the 
Jacobian matrix is a diagonal matrix with components 

  (39) 

Transformation of Dependent Random Variables: Nataf 
The previous section is now extended to include correlation between the random 
variables. As a first step, consider the transformation of each random variable xi 
according to the transformation in the previous section, i.e., disregarding correlation: 

  (40) 

where the variables z are normally distributed with zero means and unit variances. 
However, they are correlated. To facilitate the sought transformation it is assumed that 
the random variables zi are jointly normal. This is called the Nataf assumption. Under this 
assumption it can be shown (Liu and Der Kiureghian 1986) that the correlation 
coefficient r0,ij between zi and zj is related to the correlation coefficient rij between xi and 
xj by the equation: 

  (41) 

where  

  (42) 

and  is the bivariate standard normal PDF: 

  (43) 

The Nataf joint distribution model is valid under the lax conditions that the CDFs of xi be 
strictly increasing and the correlation matrix of x and z be positive definite. It is an 
appealing transformation because it is invariant to the ordering of the random variables 
and a wide range of correlation values is acceptable. The downside is that Eq. (41) must 
be solved for each correlated pair of random variables. Once this is done the 
transformation from z to y must be addressed. Both are associated with zero means and a 
unit covariance matrix. In accordance with Eq. (25), but now with zero mean, the 
transformation reads 
  (44) 

where B is sought. Similar to Eq. (27) the covariance matrix for y is written 

  

∂
∂xi

Fi(xi ) = Φ( yi )( )     ⇒     fi(xi ) =
∂
∂xi

Φ( yi ) =
∂yi

∂xi

∂
∂yi

Φ( yi ) =
∂yi

∂xi

ϕ( yi )

ϕ

∂yi
∂xi

=
fi (xi )
ϕ(yi )

zi = Φ−1 Fi (xi )( )

  
ρij =

xi − µi

σ i

⎛

⎝⎜
⎞

⎠⎟
x j − µ j

σ j

⎛

⎝
⎜

⎞

⎠
⎟ϕ2(zi , z j ,ρ0,ij )dzi dz j

−∞

∞

∫
−∞

∞

∫

  

xi = Fi
−1 Φ(zi )( )

x j = Fj
−1 Φ(z j )( )

ϕ2

  

ϕ2(zi , z j ,ρ0,ij ) =
1

2π 1− ρ0,ij
2    

exp −
zi

2 + z j
2 − 2 ⋅ ρ0,ij ⋅ zi ⋅ z j

2 ⋅(1− ρ0,ij
2  )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

y = Bz
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  (45) 

which yields 

  (46) 

It is observed that B is the inverse of the Cholesky decomposition of the covariance 
matrix of z. That covariance matrix is equal to the correlation matrix because the standard 
deviations are all zero. Hence, the Nataf transformation is 

  (47) 

where L is the Cholesky decomposition of the correlation matrix of z, i.e., it contains the 
correlation coefficients r0,ij. The Jacobian matrix for the Nataf transformation combines 
Eqs. (36) and (39): 

  (48) 

where the brackets imply a diagonal matrix. Conversely: 

  (49) 

In methods like SORM the second-order derivative of the transformation is also needed. 
The double derivative of y with respect to z, and vice versa, is zero. The double 
derivative of x with respect to z yields a slightly more complex diagonal matrix: 

  (50) 

Transformation of Dependent Random Variables: Rosenblatt 
An alternative to the Nataf approach is to consider the joint PDF of x as a product of 
conditional PDFs: 

  (51) 

As a result of this sequential conditioning in the PDF the conditional CDFs are written 

ΣYY = BΣZZB
T = I

ΣZZ = B
−1B−T

y = L−1z      ⇔       z = Ly

Jy,x ≡
∂y
∂x

= L−1 fi (xi )
ϕ(yi )

⎡

⎣
⎢

⎤

⎦
⎥

   

∂x
∂y

= L
ϕ( yi )
fi(xi )

⎡

⎣
⎢

⎤

⎦
⎥

   

∂
∂z j

∂xi

∂zi

=
ϕ(zi )
f (xi )

⎛

⎝⎜
⎞

⎠⎟

⇒
∂2 xi

∂zi ∂z j

=
∂ϕ(zi )
∂z j

⋅ 1
f (xi )

+ ∂
∂z j

1
f (xi )

⎛

⎝⎜
⎞

⎠⎟
⋅ϕ(zi )

⇒
∂2 xi

∂zi ∂z j

=
∂ϕ(zi )
∂z j

⋅ 1
f (xi )

+ ∂
∂x j

1
f (xi )

⎛

⎝⎜
⎞

⎠⎟
⋅
∂x j

∂z j

⋅ϕ(zi )

⇒ ∂2 x
∂z2 =

∂ϕ(zi )
∂zi

⋅ 1
f (xi )

− 1
f (xi )

2 ⋅
∂ f (xi )
∂xi

⋅
∂xi

∂zi

⋅ϕ(zi )
⎡

⎣
⎢

⎤

⎦
⎥

f (x) = f1(x1) ⋅ f2 (x2 x1) fn (xn x1, x2 ,…, xn−1)
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  (52) 

Having these CDFs facilitates the triangular transformation that is referred to as 
Rosenblatt transformation: 

  (53) 

To obtain the inverse transformation it is necessary to solve nonlinear equations for xi, 
starting at the top of Eq. (53). The Jacobian matrix for this transformation is 

  (54) 

where the term in brackets is a diagonal matrix. The result of the transformation depends 
somewhat on the ordering of the random variables.  
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F(x1) = f1(x1)dx1
−∞

x1

∫

F(x2 x1) = f2 (x2 x1)dx2
−∞

x2

∫

F(x3 x1, x2 ) = f3(x3 x1, x2 )dx3
−∞

x3

∫


y1 = Φ−1 F1(x1)( )
y2 = Φ−1 F2 (x2 x1)( )
y3 = Φ−1 F3(x3 x1, x2 )( )


Jy,x ≡
∂y
∂x

=

f1(x1)
ϕ(y1)

0 0 0

1
ϕ(y2 )

∂F2 (x2 x1)
∂x1

f2 (x2 x1)
ϕ(y2 )

0 0

1
ϕ(y3)

∂F3(x3 x1, x2 )
∂x1

1
ϕ(y3)

∂F3(x3 x1, x2 )
∂x2

f3(x3 x1, x2 )
ϕ(y3)

0

   

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥


