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Stochastic Dynamics 
This document addresses structures subjected to excitation from one or more continuous 
stochastic processes. As a result, the documents on structural dynamics and stochastic 
processes are important prerequisites for this material. In the document on dynamics the 
load is denoted F(t) and the response by u(t). That notation is translated into the processes 
F(t) and U(t) in this document. While the following derivations addresses only the 
structural dynamics problem, it is important to note that many other systems exist. Many 
of the concepts employed here, such as the transfer function to go from input to output, 
are valid also for systems beyond structural dynamics. 

Time-domain Response  
 
Another fact that is directly translated from the document on SDOF dynamics is the time-
domain response of an SDOF system subjected to arbitrary excitation: 

  (1) 

where h is the unit impulse response function for the system. Several response quantities 
will be derived from this equation.  

Mean Function 
The mean function for the response is the expectation of Eq. (1)  

  (2) 

If the mean of the excitation is constant at µF then the response mean is also constant: 

  (3) 

where H(0) is the transfer function H(w) evaluated at w=0. This means that the response-
mean is equal to the input-mean divided by the stiffness, K. In other words, the mean 
response is equal to the static response of the system subjected to the mean load. This 
also shows that if the input-mean is zero then the response-mean is zero as well. 

Autocorrelation Function 
The autocorrelation is obtained by utilizing its definition as an expectation, i.e., the mean 
square: 

  (4) 

where r and s are auxiliary integration variables.  

U(t) = h(t −τ ) ⋅F(τ ) ⋅dτ
−∞

∞

∫
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Frequency-domain Response  
Response Spectrum 
For a zero-mean process the autocorrelation function and the autocovariance function are 
identical, and the power spectral density (PSD) of the response is obtained by the Fourier 
transform of Eq. (4): 

  (5) 

where H(w)* is the complex conjugate of the complex transfer function and |H(w)| is its 
modulus. 

Cross-covariance and Cross-Spectrum 
The cross-spectrum is the Fourier transform of the cross-covariance function: 

  (6) 

For the complex cross-spectrum written on the standard form: 
  (7) 

the real part, Co, is called the co-spectrum and the imaginary part, Qu, is called the 
quadrature spectrum. For the complex cross-spectrum written on polar form: 

  (8) 

the part |SFU(w)| is called the modulus spectrum and the part qFU(w) is called the phase 
spectrum. More can be said about these spectra, and this will be written later.  

Overview 
 

 Input  Structure  Output 

Time-domain RFF(t) ® h(t) in Eq. (4) ® RUU(t) 

  
Fourier  

transform 
¯ 

 

 
Fourier  

transform 
¯ 

 

 
Fourier  

transform 
¯ 

Frequency-domain SF(w) ® H(w) in Eq. (5) ® SU(w) 

 

Response to White Noise 
White noise is characterized by a constant spectrum, SF(w)=So. In other words, there is 
equal contribution from all possible frequencies. This type of excitation is entirely 
artificial, but it is more practically useful than it seems at first glance. This is because 
even narrowband excitation contributes merely around the natural frequency of vibration 
of the system; hence, the excitation spectrum can often be approximated as constant in 

 
SU (ω ) =

1
2π

RFF (τ ) ⋅e
− i⋅ω⋅τ dτ

−∞

∞

∫ =!= H (ω )* ⋅H (ω ) ⋅SF (ω ) = H (ω ) 2 ⋅SF (ω )

SFU (ω ) =
1
2π

⋅ CFU (τ ) ⋅e
− iωτ ⋅dτ

−∞

∞

∫

SFU (ω ) = CoFU (ω )+ i ⋅QuFU (ω )

SFU (ω ) = SFU (ω ) ⋅e
− i⋅θFU (ω )
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that vicinity, particularly for systems with low damping. Because the modulus of the 
complex transfer function is, from SDOF dynamics 

  (9) 

application of Eq. (5) leads to  

  (10) 

where b is, as in the dynamics documents, the ratio of the excitation frequency to the 
natural frequency of vibration for the system. The variance associated with this response 
process, i.e., the area underneath the spectrum is  

  (11) 

Response to Narrowband Excitation 
When damping in the system is low, the response is usually narrowband because most of 
the contributions come from the narrow range around the natural frequency of vibration. 
This means that the response spectrum is, according to Eq. (10): 

  (12) 

where wr is the resonance frequency of the system. Mirroring deterministic dynamics, if 
the dominant excitation frequency hits the resonance frequency then the amplitude is 
“damping controlled.” In contrast, if the excitation frequency is far lower than the 
resonance frequency, then the loading is essentially static and the response is “stiffness 
controlled.” Conversely, if the excitation frequency is much higher than the excitation 
frequency then the load is not moving the mass much before changing direction, hence 
the stiffness is not activated and the response amplitude is “mass controlled.” 

Short-term Response Statistics 
For design purposes it is of great interest to know “response statistics,” such as the 
probability distribution of the maximum amplitude during a time-interval. Short-term 
statistics, sometimes called “local” analysis, looks at short time intervals and studies the 
probability distribution of “peaks.” Long-term statistics, sometimes called “global” 
analysis and addressed in the next section, looks at longer time periods and studies the 
probability distribution of “extremes.” 

Up-crossing Rate 
It is practically useful to know how often a stochastic process exceeds a selected 
threshold. In fact, the rate at which the process exceeds a threshold is a key building 
block for establishing the probability distribution of peaks and extremes. This rate is 
called “up-crossing rate” (out-crossing rate for vector processes) and for a zero-mean 

H (ω ) = 1
K
⋅ 1

1− β 2( )2 + 2 ⋅ξ ⋅β( )2

SU (ω ) =
So

K 2 ⋅ 1+ (4ξ 2 − 2)β 2 + β 4( )

σ 2
U = π

2
⋅ So
M 2 ⋅ξ ⋅ω n

3

SU (ω ) =
SF (ω r )

K 2 ⋅ 1+ (4ξ 2 − 2)β 2 + β 4( )
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process the down-crossing rate is essentially the up-crossing rate for the negative process. 
For the response process U(t) the rate of up-crossing of the threshold r is defined as  

   (13) 

The probability in the numerator should formally include the possibility of more than one 
up-crossing, but for small Dt there is either zero or one crossings. The probability that an 
up-crossing takes place in the time-interval from t to t+Dt can be obtained in several 
ways. One approach is to formulate an up-crossing event as the intersection of the 
following two events, illustrated in Figure 1a: 

1. The response is below the threshold r at time t:   
2. The response is above the threshold r at time t+Dt:  

where it is assumed that the velocity, , is constant within Dt so that the amplitude 
changes by  within Dt. By moving that term over to the right-hand side of the 
inequality in the second event, the condition for an up-crossing can be written 

  (14) 

This intersection event is visualized as a gray-shaded area in Figure 1b, where the 
abscissa axis is the velocity and the ordinate axis remains U(t). As a result, the sought 
probability is obtained by integrating the joint PDF of U(t) and , here written 

, over the shaded area: 

  (15) 

 
Figure 1: Visualization of the up-crossing event. 

For infinitesimally small Dt, the amplitude U(t) remains approximately equal to the 
threshold r throughout the shaded region in Figure 1b. As a result, the variable u can be 
replaced by the constant r in the joint PDF, making it constant in the U(t)-direction. 
Hence, Eq. (15) reads 

  (16) 

ν +
U (r,t) = lim

Δt→0

P(upcrossing of r  in [t,t + Δt])
Δt

U(t) < r

 U(t)+ !U(t) ⋅ Δt > r

 
!U(t)

 
!U(t) ⋅ Δt

 r − !U(t) ⋅ Δt <U(t) < r

 
!U(t)

 fU (t ) !U (t )(u, !u)

 
P(upcrossing of r  in [t,t + Δt]) = fU (t ) !U (t )(u, !u)dud !u

r− !u⋅Δt

r

∫
0

∞

∫

t 

U(t) 

r 

t t+Δt 

U(t) < r

 U(t)+ !U(t) ⋅ Δt > r

U(t) 

r 
 
!U(t) ⋅ Δt

 
!U(t)

(a) (b) 

 
P(upcrossing of r  in [t,t + Δt]) = ( !u ⋅ Δt) ⋅ fU (t ) !U (t )(r, !u)d !u

0

∞

∫
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This is the general expression of the sought probability, which by substitution into Eq. 
(13) yields the following general expression for the up-crossing rate:  

  (17) 

As shown in the document on continuous stochastic processes, a stationary process U(t) 
is uncorrelated with its derivative process . Furthermore, for uncorrelated Gaussian 
random variables the joint PDF can be written as a product of the marginals, which 
means that lack of correlation implies independence. As a result, the up-crossing rate in 
Eq. (17) for a stationary Gaussian process is (Lutes and Sarkani 1997) 

 (18) 

where F is the standard normal CDF. For stationary response, the mean of the velocity is 
zero, so that 

  (19) 

where it is noted that the rate of up-crossing of the mean is 

  (20) 

Because the variance of a continuous stochastic process equals the spectral moment l0, 
and the variance of the derivative of a process equals the moment l2, Eq. (20) can be 
rewritten in terms of spectral moments as: 

  (21) 

Rate of Occurrence of Peaks 
A peak of U(t) occurs when . As a result, the rate of occurrence of peaks equals 
the rate of down-crossings of the level zero by the derivative process. Similarly, the rate 

 
ν +
U (r,t) = limΔt→0

( !u ⋅ Δt) ⋅ fU (t ) !U (t )(r, !u)d !u
0

∞
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0

∞
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0

∞
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of occurrence of valleys equals the rate of up-crossings of the level zero by the derivative 
process.  

Probability Distribution of Peaks 
The probability distribution of the random variable Up is here sought, where Up is the 
amplitude of an arbitrary peak. A simplified approach is to consider narrowband 
processes, where the number of up-crossings of a level equals the number of peaks above 
that level. In that case, the total number of peaks equals the number of up-crossings of the 
mean level, and the number of peaks above the threshold up equals the number of up-
crossings of the level up. Using up-crossing rates, the probability of peaks above the 
threshold up is then 

  (22) 

hence, the sought CDF is 

  (23) 

Substitution of Eq. (19) for Gaussian processes yields, for a zero-mean process: 

  (24) 

Differentiation yields the corresponding PDF: 

  (25) 

which is the Rayleigh distribution. The mean of this distribution, i.e., the expected peak 
response is, from the Rayleigh distribution in the document on continuous random 
variables: 

  (26) 

From the same document the standard deviation is 

  (27) 

P(Up > up ) =
ν + (up )
ν + (0)

F(xp ) = 1−
ν + (xp )
ν + (0)
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Long-term Response Statistics 
Consider a random variable defined as 

  (28) 

namely the extreme value of a stochastic process during the time interval T. In practical 
applications, the probability distribution of Ue is perhaps the most important response 
statistic. Establishing this distribution in general is a difficult problem that is related to 
the challenging first-passage problem in time-variant reliability analysis. A simple and 
sometimes accurate approach for narrowband processes is to assume that up-crossings of 
a high threshold are independent of each other. In that case, the Poisson process can be 
employed to model the up-crossing events. The number of up-crossings during T is then 
given by the Poisson distribution with rate of up-crossings  over the threshold ue: 

  (29) 

Because the probability of zero up-crossings is p(0), the probability of any number of up-
crossings is 1–p(0). As a result, the CDF (the probability of extremes less than the 
threshold) is 

  (30) 

Substituting the crossing rate for stationary Gaussian processes yields: 

  (31) 

From this distribution it is possible to derive the mean and variance of the extreme 
response during time T: 

  (32) 

where Euler’s constant is g=0.5772. Furthermore, the second moment is 

  (33) 

which means that the variance is 

  (34) 
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It is emphasized that the expected extreme value, , has a relatively high chance, say 
around 50%, of being exceeded. It is also noted that the expected extreme value increases 
with T, while the variance diminishes. The probability distribution above can also be used 
to obtain an expression for the threshold r that has probability p of not being exceeded 
during the time interval T: 

  (35) 

Response of MDOF Systems 
This is yet to be written, where the transfer functions are collected in a matrix and the 
unit impulse response functions are collected in a vector: 

  (36) 

  (37) 

Nonlinear Structures and Non-Gaussian Loading 
The objective in general time-variant reliability analysis is to determine the probability of 
limit-state violation during the time period T: 

  (38) 

A brute-force approach to solving this problem is to define a limit-state function at 
“every” time instant and treat the problem as a series system reliability problem. Another 
approach to solving the first-passage problem is to first consider the event that the limit-
state function is positive at time t: 

  (39) 

Next, consider the event that the limit-state function is negative at time t+Dt: 

  (40) 

One or more out-crossings have occurred during Dt. Related to Eqs. (39) and (40), 
consider two auxiliary limit-state functions. The first contains the limit-state function at 
time t: 
  (41) 

The second is the limit-state function at t+Dt represented by its linear Taylor 
approximation centred at t: 

µue
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H(ω ) = Hij (ω )⎡⎣ ⎤⎦

h(t) = hij (t)⎡⎣ ⎤⎦

pf (T ) = P min
0≤t≤T

g(x(t),t){ } ≤ 0( )

g(x(t),t) > 0

g(x(t + Δt),t + Δt) ≤ 0

g1 = −g(x(t),t)
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  (42) 

In terms of the auxiliary limit-state functions, the probability of out-crossing is now 
formulated as a parallel system problem 

  (43) 

so that the mean crossing rate is (Hagen and Tvedt 1991)  

  (44) 

An exact solution, in terms of an integral, is available for the bi-variate normal 
distribution that is required for the two-component parallel system probability. However, 
care must be exercised because of the high correlation between g1 and g2. The upper 
bound to the probability of excursion into the failure domain during time T is 

  (45) 

In situations where the crossing events are independent, the Poisson process can again be 
employed and the probability of one or more crossings is 

  (46) 
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