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Size Effect Models 
Weibull Theory 
This theory is based on a “weakest link” approach to material strength, and essentially 
simplifies the problem to the calibration of two parameters m and k. To understand the 
theory, consider a structural member that consists of n small elements. If any of the small 
elements fail, then the member fails. Denote the strength of each small element by t and 
assume that the probability distribution of this strength, i.e., F(t) is known. Then, the 
survival probability of each element, ps,n is 

  (1) 

If the small elements are statistically independent then the survival probability for the 
entire member is 

  (2) 

For large n, series expansion yields 

  (3) 

Consequently, the failure probability of the member, for large n, is 

  (4) 

According to Weibull, the CDF for the strength of each small element is  

  (5) 

for t>0, where k>0 is called the shape parameter and m>0 is called the scale parameter. 
Eq. (5) is intended as a convenient approximation of the lower tail of the unknown actual 
probability distribution of the strength. Substitution of Eq. (5) into (4) yields 

  (6) 

If the structural member is divided into infinitely many infinitesimally small elements 
then the failure probability reads: 

  (7) 

Under the assumption that the structural member has unit volume and uniform stress, the 
failure probability becomes: 

  (8) 
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where t* is the strength of the unit reference volume. Eq. (8) is the standard Weibull 
distribution. Suppose this reference strength is known. The strength of another structural 
member non-unit volume and/or non-uniform stress distribution is obtained by equating 
its failure probability with the unit-volume reference member: 

  (9) 

Hence, a design check can be of the form 

  (10) 

or equivalently of the form 

  (11) 

To arrive at the O86 code equation for shear capacity of large glulam beams, multiply Eq. 
(11) by the constant Wf on both sides 

  (12) 

The shear stress distribution over a rectangular cross-section is 

  (13) 

Hence, the volume integral in Eq. (12) reads 

  (14) 

Substitution into Eq. (12) yields 
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  (15) 

In contrast, the O86 code formula is 

  (16) 

where the factor Cv is 

  (17) 

where G is substituted by the integral of the shear force diagram because the code 
specifies 

  (18) 

which is Simpson’s integration rule without the factor 1/6. It is also noted that Wf is the 
total load, Z is the beam volume, and Ag is the cross-sectional area. In summary, the O86 
code equation is 

  (19) 

Compared this with the theoretically derived Eq. (15). 

Possible Simpler Implementation 
  (20) 

  (21) 
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Determination of Shape and Scale Parameters 
The shape parameter, k, and the scale parameter, m, are determined from tested beams 
with known volume, shear force diagram, and shear failure load. To calculate k and m the 
stress at a reference location in the beam due to the failure load is first computed. The 
maximum shear stress in the cross-section is typically selected, which for rectangular 
cross-sections read 

  (23) 

Next, this reference stress enters a generic equation that expresses the stress at any 
location in the beam: 

  (24) 

Substitution into Eq. (9) yields 

  (25) 

Factorize out the shear force from the integral and introduce I(k), and equivalently b: 

  (26) 

In a plot with ln(tM) along the abscissa axis versus ln(V) along the ordinate axis the slope 
of the function is 1/k. To ease the regression, the median tM for each beam configuration 
is usually plotted. Knowing k, b, and the median values of tM, the corresponding media 
values of t* are computed from Eq. (25). This gives the median value of the Weibull-
distributed random variable t*, which corresponds to the inverse CDF value at 0.5 
probability of exceedance 

  (27) 

Solving for m yields: 

  (28) 
Regression results from Foschi and Barrett for 1.0m3 reference volume is k=5.53 and 
m=2,540kN/m2.  The values for k and m are substituted into the Weibull equation, i.e., 
Eq. (8), to obtain reference strength values for different exceedance probabilities: 

  (29) 
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  (30) 

References 
It would be appropriate to include references here to Weibull as well as work by Dr. 
Richardo Foschi at UBC and others. 
 

τ 0.5
* = (2,540kN/m2 )· − ln(1− 0.5)( )1/5.53 = 2,377kN/m2

τ 0.05
* = (2,540kN/m2 )· − ln(1− 0.05)( )1/5.53 = 1,484kN/m2


