
Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Sampling Updated June 11, 2019 Page 1 

Sampling 
There exist several sampling schemes to address the reliability problem. In fact, sampling 
is equally applicable to component and system reliability problems. For this reason, the 
failure region is identified by the symbol Wf, where  

  (1) 

for component problems and defined in terms of several limit-state functions for system 
reliability problems, as described in the document on system reliability analysis. In this 
notation, the reliability problem reads 

  (2) 

where f(x) is the joint PDF for the random variables, which are collected in the vector x.  

Monte Carlo Sampling 
Several sampling schemes are available to estimate the failure probability, pf. The 
simplest and most popular approach is called Monte Carlo sampling, in which samples of 
the random variables are generated according to the distribution f(x). Monte Carlo 
sampling is derived in two steps. First, the indicator function is introduced: 

  (3) 

where I=1 for realizations inside Wf and 0 elsewhere. It is observed that pf is the 
expectation of the indicator function I(x) with respect to the distribution f(x). Next, to 
obtain a workable expression for the joint probability distribution the integral is 
transformed into the space of standard normal random variables: 

  (4) 

This leads to the following algorithm for Monte Carlo sampling: 
1. Generate an outcome yi of the n-dimensional random vector y according to the joint 

standard normal PDF: 

  (5) 

2. Transform the realization yi into the original space of random variables xi 
3. Evaluate the limit-state function(s) g(xi) and ultimately the indicator function I(xi) 
4. Update the following average, i.e., expectation: 
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  (6) 

where N is the number of samples, which is unrelated to the number of random 
variables, n. 

5. Repeat from Step 1 until sufficiently many samples are analyzed 
Compared with this procedure, which aims at computing the failure probability 
associated with the domain Wf it is even simpler to compute some statistics of a response 
or a limit-state function, or to display a histogram of it. 

Importance Sampling 
Monte Carlo sampling requires a high number of samples to obtain an accurate estimate 
of pf if pf is small. If a FORM analysis has preceded the sampling analysis then a far more 
efficient sampling scheme is obtained by utilizing the design point from FORM as the 
centre for the sampling distribution. The use of a sampling distribution that is centred 
closer to the failure region than the mean of the random variables is called importance 
sampling. To derive it, reconsider Eq. (4) and multiply the integrand by the auxiliary unit 
fraction h(y)/h(y). 

  (7) 

It is observed that the failure probability is now the expectation of  

  (8) 

with respect to the distribution h(y), which is the new distribution that y are sampled 
from. In importance sampling around the design point from FORM, h(y) is usually 
selected as the shifted standard normal distribution 

  (9) 

where y* is the design point coordinates. Otherwise the Monte Carlo sampling procedure 
holds valid also here, with the following expression for the failure probability: 

  (10) 

where qi shorthand notation for q(yi), which is defined in Eq. (8).  

Coefficient of Variation of the Sampling Result 
The coefficient of variation of the failure probability, denoted dpf, is monitored to gauge 
when the sampling analysis has reached a sufficient level of accuracy. A coefficient of 
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variation around 2-5% is usually considered acceptable. Higher values may draw the 
accuracy of pf into question. The coefficient is defined as 

  (11) 

The derivation of dpf starts with the expression for the failure probability in Eq. (10). As 
noted in the document on analysis of functions, expectation is a linear operator, thus the 
mean of pf is 

  (12) 

where qi is a general shorthand notation for I(xi) in Eq. (6) and the variance of pf is 

  (13) 

Substitution of Eqs. (12) and (13) into Eq. (11) yields 

  (14) 

For Monte Carlo sampling, Var[q] and E[q] are determined from the fact that q is a 
discrete random variable that can take on the values 0 and 1. The probability of q=1 
equals pf. Consequently: 

  (15) 

Substitution of Eq. (15) into (14) yields the coefficient of variation of pf from Monte 
Carlo sampling: 

  (16) 

Solving for N yields the necessary number of samples to achieve a prescribed coefficient 
of variation for a specific target failure probability: 

  (17) 

For example, if a failure probability around 10-3 is expected then around 399,600 samples 
are needed to achieve a 5% coefficient of variation and around 2,497,500 samples are 
needed to achieve a 2% coefficient of the failure probability. The phrase “variance 
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reduction techniques” are often applied to sampling methods that reduce the variance of 
the sampling result, i.e., the variance in Eq. (14) more rapidly than Monte Carlo 
sampling. 

The Concept of Subset Sampling 
This sampling approach employs the multiplication rule of probability to subset events. 
Consider an event E2 that is a subset of the event E1. Furthermore, let E3 be a subset of 
E2, let E4 be a subset of E3, and so forth. This situation is visualized in Figure 1 in two 
ways. The left picture shows a Venn diagram in which the event Em+1 is the subset of the 
event Em. The right-hand side diagram shows the same situation for a reliability problem, 
in which the failure domain of the limit-state function Gm+1 is the subset of the failure 
domain of the limit-state function Gm.  

 
Figure 1: Subset events. 

Because the event Em+1 is the subset of the event Em the probability P(Em+1) equals the 
intersection probability P(Em+1Em). Furthermore, application of the multiplication rule of 
probability yields 

  (18) 

 Recursive use of this equation for the examples visualized in Figure 1 yields 

  (19) 

The reason why this leads to a more efficient sampling method than Monte Carlo 
sampling is described with reference to the right-hand side of Figure 1. Let G4 be the 
actual limit-state function for which the failure probability is sought. Subtract a constant 
to this limit-state function so that its mean value is approximately zero. In other words, a 
constant is subtracted so that G4 turns into G1 in Figure 1. Later modification of the 
constant will yield G2 and G3. It is clear that the origin-centred Monte Carlo approach 
will provide quite accurate results for G1, i.e., P(E1) with relatively few samples. Next, 
assume that a sampling distribution h(y) could be constructed that generated realizations 
inside the failure domain E1. Sampling with that distribution would lead to quite accurate 
results for the probability P(E2|E1) with relatively few samples. The sampling distribution 
is subsequently updated to address the other conditional probabilities P(Em+1|Em) for 
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sequentially increasing n. Finally, Eq. (19) is evaluated by multiplying the results. The 
key difficulty with subset sampling is the construction of a sampling distribution, h(y) 
that generates samples only within specified regions En in the space of random variables.  


