
Quadratic Limit-state Function
To illustrate aspects of the second-order reliability method, SORM, we consider the following limit-
state function:

g = 1818.0 + 15.34 x1 - 208.25 x2 + 0.04 x12 + 6.25 x22 - x1 x2;

The two random variables are uncorrelated and normally distributed with the following second-
moment information:

μ1 = 50;
μ2 = 20;
σ1 = 5;
σ2 = 0.4;

Transformation into the standard normal space is simple without correlation:

x1fromy1 = μ1 + σ1 y1;
x2fromy2 = μ2 + σ2 y2;

That yields the following limit-state function in the standard normal space:

G = g /. {x1 -> x1fromy1, x2 → x2fromy2} // Expand

20. - 3.3 y1 + 1. y12 - 3.3 y2 - 2. y1 y2 + 1. y22which yields:

The joint probability density function in the standard normal space, i.e., the bivariate standard normal 
PDF, is here plotted together with the limit-state function, G:

φ =
1

2 π
Exp-

y12 + y22

2
;
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The same two functions, φ and G, are here visualized in a contour plot, with a thick line to identify 
G=0; the following design point coordinates, determined by FORM, are also identified by a solid 
circle:

yStar = {3, 3};
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The gradient vector in the standard normal space is:

∇G = {D[G, y1], D[G, y2]};
MatrixForm[∇G]


-3.3 + 2. y1 - 2. y2
-3.3 - 2. y1 + 2. y2

which yields:

That means the gradient vector at the design point is:

∇Gstar = ∇G /. {y1 → yStar[[1]], y2 → yStar[[2]]};
MatrixForm[∇Gstar]


-3.3
-3.3

which yields:

As a result the α-vector is:
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α = -
∇Gstar

Norm[∇Gstar]
;

MatrixForm[α]


0.707107
0.707107

which yields:

On the basis of that α-vector a viable rotation matrix is:

P = {{-α[[1]], α[[1]]}, α};
MatrixForm[P]


-0.707107 0.707107
0.707107 0.707107

which yields:

For the purpose of doing SORM analysis the Hessian, i.e., the second-order derivatives of the limit-
state function is:

H = {D[∇G, y1], D[∇G, y2]};
MatrixForm[H]


2. -2.
-2. 2.

which yields:

That means the A-matrix from the SORM theory is containing the zeros mentioned there:

A =
P.H.P5

Norm[∇Gstar]
;

Chop[MatrixForm[A]]


0.857099 0

0 0
which yields:

Because this problem only has two random variables there is no need for an eigenvalue analysis; there 
is only one curvature, κ1, which is found in the (1,1) position of the A-matrix. The fact that κ1 is 
positive implies that the limit-state surface curves outwards from the design point. This is seen in 
earlier plots. Now to the final results:

The reliability index from FORM is:

βFORM = Norm[yStar] // N

4.24264which yields:

The associated failure probability from FORM is:
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pfFORM = CDF[NormalDistribution[0, 1], -βFORM];
ScientificForm[pfFORM]

1.10452 × 10-5which yields:

The asymptotic SORM correction naturally yields a smaller result:

pfSORM = pfFORM
1

1 + PDF[NormalDistribution[0,1],βFORM]
pfFORM

A[[1, 1]]

5.03073 × 10-6which yields:

That result is associated with the following generalized reliability index, not very different from the 
FORM index above:

-InverseCDF[NormalDistribution[0, 1], pfSORM]

4.41585which yields:
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