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Linear Regression Models 
Modelling is a central theme in these notes.  The idea is to develop and continuously 
improve a library of predictive models for hazards, responses, and impacts.  Ideally, the 
models are based on both mechanics and statistics, i.e., both theory and observations. 
This document focuses on the use of statistics, i.e., observations, to develop models. In 
doing so it must be carefully noted that a model that matches past observations will not 
necessarily predict future events. Therefore, all uncertainty, reducible and irreducible, 
should be candidly recognized. Within the field of linear regression, which is here 
interpreted to include the Bayesian approach that features random model parameters, it is 
common to distinguish between single-variable and multiple linear regression models. 
However, the single-variable model is usually adopted for pedagogical reasons while 
actual applications have several variables. For that reason, the general linear regression 
model is directly addressed in this document. It has the form 

  (1) 

where  

• y is the response that the model predicts, sometimes called the dependent variable, 
regressand, response, or output,  

• qi are the model parameters, called regression coefficients,  
• xi are the physical measurable independent variables, sometimes called predictor 

variables, regressors, or explanatory variables, and  
• e is a random variable that represents the remaining model error. 

The model remains linear even if terms like q2.(x2)0.5 or q3.(x2/x3) appear in the model. 
However, the model must be linear in the regression coefficients. The first explanatory 
variable, x1, is routinely set equal to 1 and called the intercept. In fact, removal of the 
intercept parameter introduces a particular piece of information about y. For the 
subsequent developments, let x denote the k-dimensional vector of explanatory variables. 
For now, assume that all information comes as n paired observations of x and y. For 
example, we observe the capacity of a structural component, y, along with its material 
and geometry properties, collected in x. For notational convenience, let all the 
observations be collected in the n-dimensional vector y and the n-by-k dimensional 
matrix X. In other words, each observation occupies one element in y and one row in X. 
In index notation, these are written yu, u=1,…,n and Xui, u=1,…,n, i=1,…,k. By similarly 
collecting the model parameters in the vector q and the discrepancy between the model 
prediction and the observations in the vector e the entire set of observations is contained 
in the following system of equations:  
  (2) 

It is noted that for any one observation, e represents the discrepancy between the 
observed value y and the value predicted by q1.x1 + q2.x2 + … + qk.xk. Eq. (2) forms the 
basis for determining the characteristics of q and e, which is the objective of linear 
regression. 

y = θ1 ⋅ x1 +θ2 ⋅ x2 ++θk ⋅ xk + ε

y = Xθ + ε
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Inference 
Ordinary Least Squares 
In classical linear regression the objective is to obtain point estimates of the model 
parameters. Although this does not yield a probabilistic model, this methodology 
provides useful insight and a basis for the Bayesian approach. Specifically, ordinary least 
squares inference determines a point estimate for q by minimizing the sum of squared 
errors. That is, it minimizes 

  (3) 

By introducing the linear model in Eq. (2) the problem reads: 

  (4) 

where  is the sought point estimate of the model parameters. The solution is obtained 
by setting the derivative of the objective function with respect to q equal to 0. This 
differentiation is conveniently carried out in index notation: 

  (5) 

Setting this derivative equal to zero and solving for q yields 

  (6) 

This is the ordinary least squares estimate in linear regression. The discrepancy between 
each observation, y, and the corresponding prediction, , is 
called the error, e. This error has certain properties; it is assumed that each error is a 
random variable with zero mean and standard deviation s, i.e., e~(0, s2In). The value of 
the standard deviation is obtained by classical statistics from the observed errors, namely 

: 

  (7) 

where s is the estimate of s, is often called the standard error. In linear regression it is 
also assumed that the number of observations are greater than the number of explanatory 
variables: n>k and that the X matrix has rank k, i.e., full column rank. In other words, the 
explanatory variables cannot be linearly dependent. It is also said that a model is a 
classical regression model if the model errors e are Normally distributed.  

ε 2 = ε1
2 + ε2

2 ++ εn
2

θ̂ = argmin ε 2( ) = argmin y − Xθ 2( )
θ̂

∂ y − Xθ 2

∂θ
=

∂
∂θm

yu − xuiθi( ) yu − xujθ j( )

=
∂

∂θm

yu
2 − xuiθi yu − yuxujθ j + xuiθi xujθ j( )

= 0 − xumyu − yuxum + xumxujθ j + xuiθi xum
= −2xumyu + 2xumxujθ j

= −2XTy + 2XTXθ

θ̂ = XTX( )−1XTy

θ̂1 ⋅ x1 + θ̂2 ⋅ x2 ++ θ̂k ⋅ xk

ε = y − Xθ̂

s2 = 1
n − k

y − Xθ̂( )T y − Xθ̂( )
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Bayesian Inference 
Bayesian inference considers the model parameters, q, and the model error, e, to be 
random variables. Thus, rather than point estimates, the objective in this section is to 
determine the probability distribution of q, as well as s, which is the standard deviation 
of the Normally distributed error, e. Assuming non-informative priors, i.e., locally 
uniform priors, the posterior distributions, given observations y, are the multivariate t-
distribution: 

  (8) 

and the inverse chi-squared distribution: 

  (9) 

where n is the degrees of freedom, where n=n-k. Notice that the least squares estimates  
and s appear as key quantities in these probability distributions. Therefore, errors in the 
estimate of  and s will affect the quality of the Bayesian estimates. Hence, the 
diagnostics available in classical linear regression maintain their importance in the 
Bayesian approach. From Eqs. (8) and (9) the following second-moment information is 
available for the multivariate t-distribution and the inverse chi-squared distribution: 

Mean of model parameters:  (10) 

Covariances of model parameters:   (11) 

Mean of model variance:  (12) 

Mean of model standard deviation:  (13) 

Variance of model variance:   (14) 

Variance of model standard deviation:   (15) 

However, when n is sufficiently large then the following simpler approximations may be 
used: 

Mean of model parameters:  (16) 

Covariances of model parameters:   (17) 

Mean of model standard deviation:  (18) 

f (θ) =
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Variance of model standard deviation:   (19) 

Given this information, the linear regression model can be implemented in a reliability 
analysis to estimate event probabilities. 

Diagnostics 
Building a regression model is an iterative process between inference and diagnostics. 
Several things can go wrong when trying to construct a model from observations. Table 1 
provides an overview of some of the potential issues, together with techniques with 
which they may be detected and corrected. The subsequent sections describe the items in 
greater detail.  
 

Table 1: Diagnostics of linear regression models 
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DETECTION  

Rank and Condition Numbers X      

R-factor       

Raw x-y Data Plots       

Normal Probability Plot    X   

Residual Plots  X X  X X 

Model Prediction Plots  X    X 

ANOVA Table       
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Potential Issues 
Collinearity 
Collinearity is a deficiency in the data. It means that two or more columns of X are 
linearly dependent, i.e., between two or more of the explanatory variables. Tendencies of 
collinearity can severely deteriorate the quality of the model. There are at least two ways 
to understand why this is the case. First, it should be possible to vary one explanatory 
variable while keeping the others fixed. This would not be possible if collinearity is 
present. Examination of Eq. (6) is another way of understanding the detrimental effect of 
collinearity. If collinearity is present then the inversion of XTX is either impossible or 
grossly sensitive to small changes in the observed explanatory variable values. 

Heteroskedasticity 
Heteroskedasticity means that the variance, s, of the model error, e, varies with y or any 
x. This violates one of the key regression assumptions, which states that the model error 
variance must be constant, i.e., homoskedastic. Although it is often non-trivial to detect 
heteroskedasticity it is a crucial part of the model development. In passing, it is noted that 
true homoskedasticiy implies that the vectors in X are orthogonal. This is usually not 
entirely true, but rarely detrimental to the quality of the model.  

Correlation of Errors 
Another fundamental assumption that applies to the errors, e, is that they are 
uncorrelated. Particularly when the data is collected over time there may be systematic 
variations that are unaccounted for in the explanatory variables. In other words, 
correlation indicates that there are additional explanatory variables that are not included 
but influence the observations. In summary, the elements of the error vector, e, should be 
homoskedastic and uncorrelated. This is referred to as a spherical correlation structure 
because Var(e)=s2 for all observations and Cov(ei,ej)=0 for all i≠j.  

Non-Normality 
The third fundamental assumption of the errors in linear regression is that they are 
Normally distributed. Severe violation of this assumption invalidates the model.  

Outliers 
Outliers are observations with extreme residuals, i.e., observed errors. 

Nonlinearity 
Nonlinearity is perhaps the most common violation of the basic assumptions of linear 
regression, along with heteroskedasticity. Nonlinearity means that the model form in Eq. 
(1) is inappropriate and that nonlinear regression is necessary, unless other remedies 
solve the problem.  

Detection 
R-factor  
The R-factor is a popular but too simplistic measure of the quality of a model. For a 
single-variable model it has merit in the sense that it equals the correlation coefficient 
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between x and y. In multiple linear regression the coefficient of determination, R2, is 
utilized, which equals the square of the correlation coefficient between the observations 
and the model predictions. It is inappropriate to employ the coefficient of determination 
to compare the quality of different models because its value also depends on the number 
of explanatory variables. Modified measures are available but it is usually best to study 
plots to compare models. 

Rank and Condition Numbers 
There are several ways to diagnose collinearity. One is to study the rank of X. To avoid 
problems with collinearity it must have full column rank. Another approach is to study 
condition numbers of XTX, which is the matrix that is inverted in Eq. (6). Any ill-
conditioning that is exposed by condition numbers raises collinearity flags. A number of 
variance inflation factors and scaled condition indices exist to test for collinearity. 

Raw x-y Data Plots 
It may be tempting to examine 2D plots with an x on the abscissa axis and y on the 
ordinate axis to understand the behaviour of y. However, in multiple linear regression this 
is usually misguided because the variation in y is caused by the simultaneous variation in 
many explanatory variables. Only an unattainable multi-dimensional plot of y in the 
space of explanatory variables would have been useful in the context of raw x-y data 
plots.  

Residual Plots 
Plots of the residuals, i.e., the observed errors or some modified version thereof, are 
crucial in checking a regression model. Several of the fundamental assumptions in linear 
regression apply to the residuals. The raw residuals are the difference between the 
observed response and the model prediction: 

  (20) 

A plot of these residuals versus the observed responses, as well as plots of these residuals 
versus the explanatory variables is an effective way of detecting potential 
heteroskedasticity, and possibly nonlinearity. When applicable, a plot of the residual 
versus the observation-order is useful for detecting potential correlation of errors.  
To improve the value of the residual plots it is common to plot modified residuals instead 
of the raw residuals. The simplest but perhaps least informative modification is to plot the 
standardized residuals, which are obtained by subtracting the mean of the residuals and 
dividing by their standard deviation. A number of other residuals are defined in the 
literature. 

Normal Probability Plot 
After verifying homoskedasticity by residual plots it is prudent to investigate the 
Normality of the residuals and the potential presence of outliers. One technique for 
determining the probability distribution of a data is set is to use a probability plot, and 
more specifically a “Q-Q plot” of quantiles. In this case, the Normal probability plot is 
applicable. One axis is simply the residual values. The other axis is formed by the inverse 
Normal CDF with standard deviation s, computed at u/n, where u is the number of the 
residual in the ordered vector of residuals and n is the number of observations. The points 

ε = y − Xθ̂
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should align with a straight line if the residuals are Normally distributed. However, some 
non-systematic deviation is unavoidable, particularly in the tails. 

Model Prediction Plots 
The overall quality of a model is gauged by plotting the observed responses, y, versus the 
predicted responses, . The better the points align with a straight line the better the 
model is. An equivalent plot is the ratio of observed and predicted responses, in which all 
values should be close to unity.  

Remediation 
Transformation 
Transformation means that a model is developed for ln(y) or some other function of y, 
instead of actually y. This may alleviate heteroskedasticity, nonlinearity, and perhaps 
non-Normality. Different transformations may be tried to see how they affect the model 
quality and diagnostic plots.  

Variable Selection 
When the data is collected in a comprehensive manner, which is unfortunately rare, many 
potential explanatory variables are available. Then the selection of explanatory variables 
to include in the model becomes an interesting exercise that can greatly improve both 
model quality and engineering insight. In fact, instead of considering only individual 
explanatory variables one should consider a multitude of explanatory functions, i.e., 
combinations of explanatory variables. For example, it may be found that (x1x2)2/(x3)3 is a 
better explanatory function than x1, x2, and x3 alone. Furthermore, in most engineering 
models it is appealing to utilize dimensionless explanatory functions rather than the 
individual explanatory variables that are often associated with some unit.  
One approach to search for explanatory functions is by engineering judgment and trial-
and-error. An explanatory function that is associated with relatively low coefficient of 
variation, dq=sq /µq, of the associated model parameter is good. The standard deviation of 
the model error, se , should also be monitored to gauge if a sufficient number of 
explanatory functions is included. Other metrics that assist in the variable selection 
include Akaike’s information criterion (AIC) and “Mallows Cp.” Note that it is possible 
to include both too few and too many explanatory functions.  
An informal technique to search for potential explanatory functions is to set up an 
algorithm that tries a large number of functions of the form 

  (21) 

where h is a potential explanatory function and mj are numbers that could be, say, picked 
from the vector {-3, -2, -1, 0, 1, 2, 3}. In Rt, this algorithm is implemented so that the 
candidate explanatory functions that are associated with the lowest dq  are identified. 
Clearly, this procedure is ad hoc and should only serve as one tool among many to 
identify the “best” model. 

Xθ̂

 h(x) = x1
m1 ⋅ x2

m2xk
mk
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Logistic Regression 
To understand the concept of logistic regression it is useful to start by anchoring the 
discussion to the following basic linear regression model: 

  (22) 

In this type of model, which is addressed in another document, the left-hand side is a 
scalar response quantity, y, and the right-hand side contains a collection of model 
parameters, q, and regressors, x, as well as the model error, e. A nonlinear regression 
model is similar, except the model parameters, q, appear in a nonlinear form on the right-
hand side. Regardless of the formulation of the right-hand side of Eq. (22), logistic 
regression is unique in the formulation for the left-hand side. Instead of a response 
quantity, y, logistic regression aims at modelling a probability, p. For example, logistic 
regression can be employed to model the probability that a structural component is in a 
particular damage state. Because probability values must lie in the interval from zero to 
one, a special formulation is necessary in the left-hand side. Specifically, logistic 
regression employs the “logit function,” or inversely the “logistic function,” to ensure 
that pÎ[0,1]. In mathematics, the logistic function  

  (23) 

varies between zero and unity as the argument, y, varies from minus to plus infinity. 
Solving Eq. (23) for y yields the logit function: 

  (24) 

Thus, a model of the form 

  (25) 

yields a model for the quantity pÎ[0,1]. This is the essence of logistic regression; the 
right-hand side and the overall modelling procedure remains the same as in linear or 
nonlinear regression, while the quantity p is guaranteed to remain in the interval zero to 
unity. With reference to Eq. (25), the analyst would have observations for x1, x2, x3, and p 
and carry out linear regression to assess q1, q2, q3, and e, thus yielding a model for the 
probability p. 

y = θ1 ⋅ x1 +θ2 ⋅ x2 +θ3 ⋅ x3 + ε

p = 1
1+ e− y

y = ln p
1− p

⎛
⎝⎜

⎞
⎠⎟

ln p
1− p

⎛
⎝⎜

⎞
⎠⎟
= θ1 ⋅ x1 +θ2 ⋅ x2 +θ3 ⋅ x3 + ε


