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Fatigue 
Stress Concentrations 
A fundamental topic in fatigue is the development of cracks in steel. For structures 
subjected to cyclic loads, such cracks can develop over time and ultimately reach the size 
at which some dramatic failure occur. While this problem is rare in structures made of 
“mild steel,” the use of “high tensile” steel changes that situation. It is straightforward to 
double the strength of mild steel by adding carbon, but this may increase the material’s 
brittleness by a factor of fifteen (Gordon 1978). If the stress in the structure was also 
doubled to take advantage of the increased strength, then the capacity of the material to 
cope with cracks is reduced by a factor of as much as 2.2.15=60, as explained by the 
equations in this document. This is a dramatic reduction which may make cracks the 
governing design concern. 
The unsuspecting steel engineer may think that the stresses calculated by the theory of 
elasticity for beams and plates can simply be compared with the yield stress to tell if the 
structure will stand or fall. However, two additional concerns must often be addressed. 
One is related to compressive stresses, where the stability against buckling must be 
considered. The other is related to tensile stresses and is addressed in this document. The 
ultimate cause of failure is severe cracks, but the underlying cause is stress 
concentrations. Specifically, the stresses computed by the theory of elasticity increase 
multi-fold at sharp corners, initial cracks in the material, and other discontinuities. These 
high and localized stresses can cause cracks to form and grow in an uncontrolled fashion.  
The stress increase in the vicinity of some discontinuity is usually expressed by a “stress 
concentration factor.” This factor is multiplied by the average tensile stress in the 
surrounding area to obtain the peak stress. The stress concentration factor for a crack of 
length L and tip-radius r is (Inglis 1913): 

  (1) 

It is observed that when L=r, i.e., when the crack is semi-circular, the stress concentration 
factor is 3. Sharper cracks leads to higher stress concentration.  

Fracture Mechanics 
Fracture mechanics is an analytical approach to the study of crack propagation. In 
contrast, the subsequent section on fatigue gives an empirical alternative to determine the 
number of stress cycles that can be handled before a crack grows out of control. The 
concept of energy is important in fracture mechanics. In particular, the energy needed to 
grow a crack is compared with the energy provided by the surrounding material. The 
former is proportional to W.L, where W is the “work of fracture” of the material and L is 
the crack length. Conversely, the energy released around the crack is proportional to L2, 
which is understood by considering triangular areas on either side of the crack. These two 
terms are illustrated in Figure 1 (Gordon 1978). Because the energy needed to grow the 

K = 1+ 2 ⋅ L
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crack varies linearly with L and the energy given by the surrounding material varies 
quadratically with L there will be a crack length at which the crack starts growing 
uncontrollably. This crack length is denoted Lg in the figure. The subscript on Lg is from 
Griffith, who developed the following formula for the “critical crack length” (Griffith 
1921): 

  (2) 

where W=work of fracture, E=Young’s modulus, and s=average tensile stress in the 
surrounding area without stress concentration included. 

 
Figure 1: Energy balance in crack growth. 

The problem of fatigue, namely the potential growth of cracks due to a high number of 
load cycles, is an important design concern, particularly for steel structures. Fatigue may 
occur in many structural applications, from bridges to ships. For example, the number of 
wave-induced bending cycles of a typical ship may be in the order of 108 during a 20-
year time period (Hughes and Paik 2010). In addition comes cycles due to loading and 
unloading, as well as engine and propeller vibration.  
Fracture mechanics represents an analytical approach to address fatigue, i.e., crack 
growth due to cyclic loading. The other approach is to use empirical S-N curves, which is 
addressed in the next section. In fracture mechanics, the crack growth is formulated by 
means of a damage accumulation model, such as: 

  (3) 
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where a is the crack length, N is number of load cycles, C and m are material constants, 
and DK is the range of the stress intensity factor K, which represents the stress range. 
Techniques to solve for a are presented in another document on damage accumulation 
models. 

S-N Curves and Miner’s Rule 
The alternative to fracture mechanics for the consideration of fatigue is the use of S-N 
curves and an assumption called Miner’s rule. The S-N diagrams simply display the 
number of load cycles, N, at a constant stress amplitude, S, it took for a test-specimen to 
fail in fatigue. A schematic S-N diagram is shown in Figure 2. It is observed that the 
horizontal distance to the S-N curve is the “fatigue life” of the test-specimen at a given 
stress level, and that below a certain stress level there is zero damage accumulation. That 
stress level is denoted S∞ and is called the “fatigue limit.” The sloped line in Figure 2 is 
straight because S-N diagrams are presented in a log-log plot. In fact, the SN curve is 
expressed as  

  (4) 

which implies that  

  (5) 

which reveals that m is the negative slope of the S-N curve in the log-log plot while  K is 
another constant that essentially represents the intercept. It is noted from Eq. (5) that the 
S-N curve can also be written  

  (6) 

 
Figure 2: Schematic S-N curve. 

The S-N curves described above appear to account only for the stress range and not the 
average stress. This is not a problem when the stress-cycles oscillates around zero, but 
could be an issue when the average stress is high, with cycles on top of that. One 
approach to include the mean stress is the “Goodman correction,” which assumes that the 
damage done by stress cycles with mean Smean and range Srange is the same as an auxiliary 
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stress process with zero mean and range Saux, related by the equation (Lutes and Sarkani 
1997) 

  (7) 

where fu is the ultimate stress capacity of the material.  Saux is solved from Eq. (7) and 
used with the ordinary S-N diagram above. An alternative to the Goodman formulation 
above is the Gerber formula: 

  (8) 

Palmgren-Miner’s Rule 
In practice, S-N diagrams are applied in conjunction with Miner’s rule, which states that 
damage accumulates linearly, in the sense that the fatigue life at different stress levels can 
be added. As a result, the stress amplitudes that the structure experiences are sorted in 
bins, where DSi and ni are the stress range and number of cycles in that stress range, 
respectively. The total fatigue damage is then measured as  

  (9) 

Theoretically, D<1 means the structure is safe, while D>1 implies fatigue failure. In 
practice, D is not allowed anywhere near unity. Rather, D is typically limited to 0.1 to 
0.3, depending on how easy it is to inspect and detect potential damage during the service 
life of the structure. 

Rainflow Count of Cycles 
For complicated stress histories it is non-trivial to count stress cycles in order to apply S-
N diagrams. Hence, the problem addressed in this section is how to divide a complicated 
time-history into cycles, to count those cycles, and then to determine the damage, D. The 
adopted approach is referred to as the rainflow method, which can be interpreted in 
several ways. For example, by Masing’s hypothesis it can be linked with hysteretic 
stress-strain curves, in which one rainflow cycle is one closed stress-strain hysteresis 
loop. Other interpretations are also possible.  
It is an objective to count all cycles, small and large, including the large ones that are 
interrupted by small cycles. The rainflow method counts half-cycles, and every part of 
the time-history are associated with exactly one of the identified half-cycles. At each 
local peak or local valley, one half-cycle is ending and another is starting. Importantly, 
the peaks and valleys are paired so as to give the largest possible half cycle, going from 
the biggest possible to the next.  
The rainflow method of counting cycles is visualized in Figure 3 for two sample time 
histories. It is first observed that the time histories are turned 90° to facilitate the rainflow 
analogy. As a result, the dashed lines in Figure 3 can be thought of as rainflows on a 
pagoda roof. The time-history in Figure 3a is periodic with constant amplitude. A quick 
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count without any rainflow analogy reveals that it contains four full cycles. In contrast, 
there are eight rainflows that originate at each extreme. Each of these rainflows 
represents a half-cycle. As a result, half-cycle count by the rainflow method for the time-
history in Figure 3a yields eight half-cycles. Four of the half-cycles are in tension, 
terminating with an arrow on the right side, and four are in compression, terminating with 
an arrow on the left side. In this case, all the half-cycles are of equal magnitude, hence 
the four tension-half-cycles can be added to the four compression-half-cycles to yield 
four full stress cycles, which is obviously the correct answer.  
The time-history in Figure 3b is more complicated. According to the rainflow method, 
each compression half-cycle starts at a tension peak and ends when it meets a flow from 
above or when it falls all the way to the ground, so to speak. With that in mind, there are 
four compression half-cycles, named 1, 2, 3, and 4 in Figure 3b, and there are four 
tension half-cycles, named A, B, C, and D. The magnitude of each half cycle is the stress 
range that it has travelled, i.e., horizontal distance. In this case the half cycles are all of 
different magnitude, thus they cannot directly be added to obtain full cycles. It is often 
the case in rainflow analysis that some “spare” half-cycles remain after the half-cycles 
have been added to a number of full cycles.  

 
Figure 3: Counting half-cycles by the rainflow method. 

 
Several algorithms exist for counting half-cycles by the rainflow method. An algorithm 
proposed by Downing and Socie in 1982 is particularly popular, and is provided in the 
following (Downing and Socie 1982; Lutes and Sarkani 1997). The algorithm starts by 
reorganizing the time-history slightly; the start-time is taken as the location of the highest 
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peak, and the time-history that preceded that peak is moved to the end. Next, the 
amplitude of all the local peaks and valleys are collected in the vector x, obviously with 
the first element being largest because of the mentioned reorganization of the time-
history. During the execution of the algorithm, a vector q, which varies in size, is also 
maintained. The algorithm is initialized by setting q1=x1, q2=x2, q3=x3, and n=3, and then 
repeats the following steps until there is no more data in x, i.e., until xm is out of bounds: 
1. Set range: R1=|qn–qn–1| 
2. Set previous adjacent range: R2=|qn–1–qn–2| 
3. If (R1<R2) then R2 is NOT a rainflow range, so do the following: 

a. n=n+1 
4. Else R2 is a rainflow range and do the following: 

a. Register R2 as a rainflow half-cycle 
b. Remove its two extrema qn–1 and qn–2 from q, i.e., shorten q by two 
c. n=n–2 
d. Append to q the next element of x if the size of q is less than three 

Stochastic Fatigue 
The objective now is to estimate the fatigue life of a structure, when the loading is a 
continuous stochastic process. To address this problem, the concepts of S-N curves and 
Miner’s rule from the document on deterministic fatigue are applied in the context of a 
stochastic stress history. This helps simplify the problem, but it is still a challenging one, 
lacking general closed-form solutions.  

Rayleigh Approximation 
According to Miner’s rule, fatigue damage is measured by D and defined by  

  (10) 

which steadily increases from zero to unity, at which failure occurs. In Eq. (10), B is the 
number of bins or stress ranges, ni is the number of cycles in each stress range, and Ni is 
the number of cycles that causes failure in in that range. In stochastic fatigue it is helpful 
to think of a damage-increment, DD, which adds to the damage in each stress cycle.  Of 
course, each cycle may have a different damage-increment, but for a given stress range it 
is assumed that DD is the same in each cycle. In other words, the damage-increment in a 
cycle is uniquely defined by the stress range of that cycle. According to Eq. (10), the 
damage-increment in each cycle is 

  (11) 

where DDi and Ni are the damage-increment and number of cycles to failure at stress 
range number i. With that definition of DDi it is possible to deal with situations with 
different stress range in each cycle. In that case there are as many bins as the number of 
cycles, and failure occurs when  
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  (12) 

where Nf is the total number of stress cycles to failure, each cycle with its own stress 
range. Eq. (12) contains a sought quantity, namely Nf, a measure of the fatigue life of the 
structure. To estimate this quantity, the expectation of Eq. (12) is considered: 

  (13) 

Solving for E[Nf] yields 

  (14) 

From the total expected number of cycles, E[Nf], the expected fatigue life is obtained by 
multiplying by the duration of each cycle. The average duration of the cycles is the 
inverse of the average rate of occurrence of cycles. For a Gaussian process that rate is 
approximated by the up-crossings of the mean stress, which is 

  (15) 

As a result, the fatigue life estimate is the expected number of cycles multiplied by the 
average cycle duration: 

  (16) 

The remaining task is to address the damage-increment. To link the amplitude of a stress 
cycle to a particular damage increment, the generic expression for an S-N curve (those 
are obtained from experimental data and introduce the “capacity” of the material) is 
substituted into Eq. (11): 

  (17) 

The expectation, needed in Eq. (16), is 

  (18) 

In what is referred to as the Rayleigh approximation of stochastic fatigue analysis, it is 
here assumed that the stress peaks are Rayleigh distributed, which is appropriate for 
Gaussian processes. As a result, the mth moment of the stress range, estimated as two 
times the peak, up, is 
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  (19) 

In summary, the expected fatigue life is 

  (20) 

Stochastic Rainflow Analysis 
The rainflow method for counting half-cycles is described in the document on 
deterministic fatigue considerations. One brute-force application of this method to 
stochastic fatigue is to simulate realizations of the stochastic stress process, followed by 
rainflow counting. Like Monte Carlo sampling, that approach is straightforward but 
accurate results come at a high computational cost. A special case that facilitates an 
analytical solution is when the S-N curve is described by m=1 (Lutes and Sarkani 1997). 
In that case, the damage increments are simply 

  (21) 

As a result, the failure criterion is  

  (22) 

In this case, the rainflow sum of stress ranges is obtained by adding contributions from 
each infinitesimal time increment dt. Denoting the stress process by U(t), the increment 
of stress during dt is . Each of these stress increments is part of a stress range 
counted by the rainflow method. Because the stress increment can be positive or 
negative, the absolute value is introduced to obtain the sum: 

  (23) 

where the factor ½ is introduced because an actual full stress cycle consists of two 
increment paths, i.e., one towards more tension and the other towards more compression. 
The expected value of the integral is 
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  (24) 

 
Substitution of the expectation on the left-hand side of Eq. (24) for the integral in Eq. 
(23) and substitution of the sum in Eq. (23) into Eq. (22) yields: 

  (25) 

For a Gaussian process, the derivative process has the normal distribution 

  (26) 

which means that the expectation of the absolute value in Eq. (25) is 

  (27) 

Substitution of Eq. (27) into Eq. (25) yields 

  (28) 

This result can be compared with the Rayleigh approximation presented earlier by setting 
m=1 and  in Eq. (20), which yields 

  (29) 

This coincidence of the rainflow approach with the Rayleigh approximation is due to the 
selection of m=1 in the S-N curve, but did not include any assumption on the bandwidth.  
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