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Damage Accumulation Models 
A Creep Model 
Creep is a long-term effect in structural materials, by which deformations slowly increase 
until possible failure. The phrase “duration-of-load” is often applied to the phenomenon 
because it captures the two key design variables of the problem: How much load is 
applied for how long. In fact, a simple visualization of the capacity of a material to 
sustain load over long time is shown in Figure 1. Failure due to creep is called “creep 
rupture” and Figure 1 is referred to as a “creep rupture curve.”  

 
Figure 1: Relationship between stress and time to creep rupture. 

Creep rupture curves like the one in Figure 1 are often entirely empirical, but there also 
exist damage accumulation models that model the phenomenon. One model is (Barrett 
and Foschi 1978) 

  (1) 

where a is the measure of accumulated damage (a=0 denotes no damage while a=1 
denotes rupture) and s0 is the stress below which damage is assumed not to accumulate. 
The parameters a, b, and c are calibration constants. In the following, consider the case 
s>s0 and rearrange Eq. (1) to the form: 
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Next, this equation is integrated from t=0 to t=T. To accomplish this it is necessary to 
apply integration by substitution to the left-hand side, which because a(0)=0 evaluates to: 

  (3) 

This left-hand side together with the integral of the right-hand side yields the following 
solution to Eq. (2), i.e., the damage, a(T), at time T:  
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  (4) 

Rearranging and acknowledging the dependence of the stress on time yields the following 
solution for the evolution of creep: 

  (5) 

Creep rupture occurs when a=1. According to Eq. (5) this leads to the following equation 
from which the time, T, until rupture can be solved: 

  (6) 

For example, if the stress is constant with time then the time until creep rupture is: 

  (7) 

Another damage accumulation model for creep is (Barrett and Foschi 1978): 

  (8) 

Again the case s>s0 is considered and the model is an ordinary linear inhomogeneous 
differential equation of the first order: 

  (9) 

To solve this differential equation its characteristic equation is established: 
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The solution is l and the homogeneous solution is: 

  (11) 

Together with the particular solution, the damage evolution is described by: 

  (12) 

A Crack Growth Model 
One model for fatigue crack propagation is (Joint Committee on Structural Safety 2001) 

  (13) 
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where a(n) is the crack size, n is number of cycles, C is a material constant, Y(a) is a 
geometry-dependent function, DS(n) is the stress range, and m is another material 
constant. Rearranging yields 

  (14) 

To integrate this equation from 0 to N, integration by substitution is first applied to the 
left-hand side: 

  (15) 

where it was assumed that a(0)=0. Integration of the right-hand side of Eq. (14), 
assuming constant stress range and constant geometry factor, yields: 

  (16) 

Combining the left-hand side and the right-hand obtained above yields the following 
integrated solution to Eq. (14), i.e., the crack size, a(N), at cycle N:  

  (17) 

Suppose failure occurs if the crack size exceeds a critical threshold, acr, Eq. (17) can be 
rearranged to express failure as follows: 
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Another model for crack growth, formulated as a function of time instead of number of 
cycles, is 
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where 
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Following the solution procedure above, rearranging yields: 

  (21) 

Integration with respect to time from 0 to T, with application of integration by 
substitution to the left-hand side, yields: 

  (22) 

from which the crack size, a, can be solved for. 
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