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Continuous Stochastic Processes 
The term “stochastic” is often applied to phenomena that vary in time, while the word 
“random” is reserved for phenomena that vary in space. Apart from this distinction, the 
modelling of uncertain temporal and spatial variation is quite similar. In fact, the 
concepts described in the following for stochastic processes remain valid also for uniaxial 
random fields. The differences that exist relate to terminology. For example, a stationary 
stochastic process is referred to as homogeneous in the context of random fields. 
A stochastic process is essentially a collection of random variables along the time axis. 
As an illustration, consider the temporal variation of, say, the wind pressure intensity at a 
particular location of a building. The intensity at a specific time instant is an individual 
random variable. The intensity at a later time instant is another random variable, often 
correlated with the first if they are close in time. It is understood that because there are 
infinitely many time-instances within even a short interval there is also an infinite 
number of random variables in a process. That does not cause any conceptual problems; 
there is no need to enumerate the random variables until realizations are generated, and 
then the problem is a practical matter of granularity rather than a conceptual problem. 
If the random variables of a process each have a continuous probability distribution, then 
the process is said to be continuous, otherwise it is discrete and outside the scope of this 
document. The present document explains continuous processes, which are employed to 
model continuously varying loads, such as ocean waves and wind, and even the ensuing 
response of the structure.  

Time Domain Model Description 
Consider a continuous stochastic process, X(t). Similar to the notation for random 
variables, the realizations are denoted by the corresponding lowercase letter, i.e., x(t). A 
group of realizations if often referred to as an ensemble. It is understood from above that 
X(t) is a collection of random variables X(ti), where ti are infinitely many time instants. 
This family of random variables is sometimes written {X(t)} (Lutes and Sarkani 1997). 
On that basis it is clear that the model for a stochastic process is essentially a joint 
probability distribution for those random variables. This joint distribution can be written 
as a CDF, CCDF, or as the joint PDF 

  (1) 

An abbreviated version of Eq. (1) is obtained by replacing X(ti) with Xi, which yields 

  (2) 

Mean Function and Second-Moment Functions 
The joint distribution tells the full statistical story of a stochastic process. However, in the 
same way as statistical moments are helpful to describe random variables, partial 
descriptors are employed also to describe a stochastic process. In this context, the first 
statistical moment corresponds to the mean function: 

 f (x,t) = fX (t1 ),X (t2 ),!,X (tn ) x(t1), x(t2 ),!, x(tn )( )

 f (x,t) = fX1,X2 ,!,Xn x1, x2,!, xn( )
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  (3) 

Now moving to second moments, it is the dependence between the process at two 
different time-instants that is of interest. To prepare for these considerations, it is first 
noted that there are several ways to express the covariance between two random variables 
X1 and X2: covariance, Cov[X1,X2], correlation coefficient, r12, and mean product, 
E[X1X2]. From the document on multivariate distributions, the relationship between these 
quantities is  

  (4) 

where µi are the means and si are the standard deviations of X1 and X2. Turning to 
stochastic process, an important second-moment descriptor is the autocorrelation function  

  (5) 

For second-moment stationary processes, described shortly, it is possible to reduce the 
two time-instants t1 and t2 in the argument to one parameter t =|t1–t2|, namely the 
temporal distance between two points anywhere along the time axis. In that case the 
notation is changed from f to R and the autocorrelation function reads 

  (6) 

where t=0 gives the mean square function E[X(t)2]. While the interpretation of the mean 
function in Eq. (3) is conceptually straightforward, the autocorrelation function warrants 
comments about its name, as well as its meaning. The name “auto” implies correlation 
within one process, to distinguish it from the cross-correlation, RXY, between two 
different processes X(t) and Y(t). The meaning of autocorrelation is approached in several 
ways. First, it is understood from Eqs. (5) and (6) that autocorrelation corresponds to the 
concept of “mean product” for random variables. In other words, the autocorrelation 
function does not display correlation, but Eq. (4) does reveal that it is related to the 
concept of correlation.  
An alternative second-moment descriptor of a stochastic process is the autocovariance 
function, which corresponds directly to the covariance concept for random variables: 

  (7) 

Again second-moment stationarity allows an alternative notation in terms of one 
parameter: 

  (8) 

where t=0 gives the variance function: 

  (9) 

µX (t) = E X(t)[ ] = x(t) ⋅ f (x,t)dx
−∞

∞

∫

Cov X1,X2[ ] = E X1X2[ ]− µ1µ2 = ρ12 ⋅σ 1 ⋅σ 2

φXX (t1,t2 ) = E X(t1) ⋅X(t2 )[ ] = x1 ⋅ x2 ⋅ f (x,t)dx1 dx2
−∞

∞

∫
−∞

∞

∫

RXX (τ ) = E X(t) ⋅X(t +τ )[ ]

κ XX (t1,t2 ) = E X(t1)− µx (t1)( ) ⋅ X(t2 )− µx (t2 )( )⎡⎣ ⎤⎦

CXX (τ ) = E X(t)− µx (t)( ) ⋅ X(t +τ )− µx (t +τ )( )⎡⎣ ⎤⎦

CXX (0) = E X(t)− µx (t)( )2⎡
⎣

⎤
⎦ =σ X

2 (t)
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It is common to work with zero-mean processes. In fact, if a process X(t) has some 
constant mean µX then it is easily transformed into the zero-mean process X(t)–µX. A 
glance at Eq. (4) reveals that CXX(t)=RXX(t) for zero-mean processes, thus the 
autocorrelation function and autocovariance function can be used interchangeably for 
such processes.  
As a matter of completeness, it is a small step to employ Eq. (4) to express the 
autocorrelation coefficient function of a stochastic process: 

  (10) 

Above, the three second-moment descriptor functions were introduced for dependence 
within a stochastic process. To obtain the corresponding expressions for cross-
correlation, cross-covariance, and cross-correlation coefficient between two processes 
X(t) and Y(t) it is sufficient to replace the indices XX in all expressions with XY.  

Stationarity 
Roughly speaking, a process that is stationary has properties that do not change along the 
time axis. Several types of stationarity are defined: 

• “Mean-value stationarity”  ........... the mean is constant 
• “Second-moment stationarity”  .... the autocorrelation function is constant 
• “Covariant stationarity”  .............. the autocovariance function is constant 
• “nth-moment stationarity”  ........... the nth moment is constant 
• “nth-order stationarity”  ................ the joint probability distribution for the process 

evaluated at n points is invariant to a time-shift 
• “Strict stationarity”  ..................... all properties of the process are constant 
• “Weak stationarity”  .................... is not uniquely defined, but often implies mean-

value and second-moment stationarity 

Continuity 
The concept of continuity appears in several contexts for stochastic processes, and some 
have been alluded to already. It is already understood that the processes considered in this 
document are continuous along the time axis, and that the probability distribution for the 
random variable X(t) at any time instant is continuous. Another consideration is the 
continuity of the autocorrelation and autocovariance functions. It can be shown that 
second-moment stationary processes with continuous autocorrelation and autocovariance 
functions at t=0 also must be continuous for all other values of t. Additional 
considerations of continuity for autocorrelation and autocovariance functions for non-
stationary processes are made in the plane stretched by t1 and t2, yet to be discussed in 
this document. Several other continuity requirements can be also formulated, but it is for 
now assumed in this document that all the realizations and associated functions are 
continuous.  

Ergodicity 
An ergodic process has the advantageous property that one can average over time to infer 
the mean, autocorrelation function, and other quantities, instead of averaging over an 
ensemble of realizations. Underneath the concept ergodicity is a form of statistical 

ρXX =
CXX (τ )

CXX (0) ⋅ CXX (0)
= CXX (τ )
CXX (0)
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independence in time. Naturally, ergodicity implies stationarity, and there are as may 
types of ergodicity as there is stationarity. However, stationarity does NOT imply 
ergodicity.  

Frequency Domain Model Description 
The autocorrelation function, described above, says something about how rapidly the 
amplitude of a process varies in time. Specifically, if RXX(t) diminishes rapidly witht then 
there is little correlation between the amplitudes even short times apart, and realizations 
will look disorderly with rapid variations in amplitude. In contrast, if RXX(t) diminishes 
slowly witht then correlation is high between the amplitude at two time-instant even 
when the times are far apart, which means that the amplitude is slowly varying in time. 
Another way to look at this is to consider frequencies, which is the topic in this section. It 
is intuitive that a disorderly realization has contributions from many frequencies, while a 
slowly varying realization has contributions from fewer frequencies. The quantity that 
captures the frequency content of a process is the power spectral density (PSD), SX(w), 
which is the Fourier transform of the autocovariance function: 

  (11) 

where the last equality is possible because of the symmetry of CXX(t). The autocovariance 
function and the PSD form a Fourier transform pair; hence, the autocovariance is 
obtained from the spectral density as 

  (12) 

For completeness it is noted that the non-imaginary form of the PSD in terms of the 
autocovariance function is 

  (13) 

which is obtained by first splitting the integral into two symmetric parts, one from 0 to ∞ 
and the other from 0 to –∞ by the variable change t®(–t), followed by substitution of 
Euler’s formula , then using CXX(t)=CXX(–t) and the facts that 
cos(wt)=cos(–wt) and sin(wt)=–sin(–wt). Similarly, the expression for the 
autocovariance function in terms of the PSD becomes: 

  (14) 

The PSD is the key model descriptor in the frequency domain. An interpretation of the 
PSD is obtained from Eq. (9), which shows that the variance of a stationary process is: 

SX (ω ) =
1
2π

CXX (τ ) ⋅e
− i⋅ω⋅τ dτ

−∞

∞

∫ = 1
π

CXX (τ ) ⋅e
− i⋅ω⋅τ dτ

0

∞

∫

CXX (τ ) = SX (ω ) ⋅e
i⋅ω⋅τ dω

−∞

∞

∫ = 2 ⋅ SX (ω ) ⋅e
i⋅ω⋅τ dω

0

∞

∫

SX (ω ) =
1
2π

CXX (τ ) ⋅e
− i⋅ω⋅τ dτ

0

∞

∫ + 1
2π

CXX (−τ ) ⋅e
i⋅ω⋅τ dτ

0

∞

∫

= 1
π

CXX (τ ) ⋅ cos(ωτ )( )dτ
0

∞

∫

eiωτ = cos(ωτ )+ i ⋅sin(ωτ )

CXX (τ ) = 2 ⋅ SX (ω ) ⋅cos(ωτ )dω
0

∞

∫
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  (15) 

In words, the area underneath the PSD is the variance of the process. In fact, the PSD 
essentially displays the amount of variance as function of frequency. That is, the value of 
the PSD at a particular frequency indicates the relative amplitude of the process at that 
frequency. Theoretically, the PSD is defined for both positive and negative frequencies, 
in fact, it is symmetric about w=0, but negative frequencies is an artificial construct. For 
that reason it is common to use the “one-sided PSD,” which is defined for positive w 
only: 

  (16) 

which gives the same area underneath the PSD for both  and SX(w). The PSD can 
be formulated in term of the frequency, f, measured in Hertz, by the transformation 
w=2pf. This version of the PSD is denoted  and is obtained from  by 
substituting 2pf for w, multiplying all ordinate values by 2p, and dividing all abscissa 
values by 2p. Again, this transformation maintains the area underneath the PSD, i.e., it 
maintains the variance of the process, which is what the PSD describes.  

Measures of Bandwidth 
The bandwidth of a process is seen from the width of the PSD. The broader PSD, the 
more frequencies contribute. A “narrowband process” has a narrow PSD and thus 
exhibits smoothly varying realizations with nearly just one dominant frequency. 
Conversely, a “broadband process” has a broad spectrum and realizations that are more 
chaotic with many contributing frequencies. The extreme-case of broadband processes is 
the artificial “white noise” process that has a constant spectrum over all frequencies and 
no autocorrelation.  
Several measures exist to characterize the bandwidth of a process. To understand these, it 
is helpful to compare them with the statistical moments of probability distributions. The 
moments of the PSD are: 

  (17) 

The PSD is not directly comparable to a probability distribution because it does not 
integrate to unity. This property is achieved by rather using the normalized PSD 

, where l0 is the area underneath the PSD, and the corresponding moments 
lm/l0. However, just like the moments of probability distributions, these moments have 
units and are therefore further normalized to become useful as dimensionless bandwidth 
measures. Directly analogous to the coefficient of variation of a random variable, a 
dimensionless bandwidth parameter is  

σ 2
X = CXX (0) = SX (ω )dω

−∞

∞

∫ = 2 ⋅ SX (ω )dω
0

∞

∫

SX
+ (ω ) = 2 ⋅SX (ω )     for   ω ≥ 0

S+
X (ω )

G+
X ( f ) S+

X (ω )

λm = ω m ⋅SX
+ (ω )dω

0

∞

∫

SX
+ (ω ) λ0



Professor Terje Haukaas The University of British Columbia, Vancouver terje.civil.ubc.ca 

Continuous Stochastic Processes Updated June 11, 2019 Page 6 

  (18) 

However, instead of the coefficient of variation it is common to use measures of 
bandwidth that take values only in the range 0 to 1. A definition that accomplishes this is 
(Lutes and Sarkani 1997) 

  (19) 

which for m=1 corresponds to the above coefficient of variation because 

  (20) 

The bandwidth measures am approach zero for very broadband process, and approach 
unity for very narrowband processes. The most popular version of Eq. (19) is 

  (21) 

This measure, and other ones, can be related to the variance of the process and its 
derivative, as described under derivative processes.  

Design Spectra 
In ship and offshore design, design spectra are employed to model the sea-surface 
elevation, h. An important spectrum, historically, is the Pierson-Moskowitz spectrum (P-
M), which is a one-sided spectrum, i.e., S+(w), with the form 

  (22) 

That spectrum gives rise to a family of design spectra, including P-M, ISSC, B-M, and 
ITTC. They share the spectrum shape  

  (23) 

where the parameters A and B are given in Table 1. Another design spectrum is 
Darbyshire-Scott, not yet written out here. Yet another option is the JONSWAP spectrum 
(from the Joint North Sea Wave Observation Project), which is essentially the Pierson-
Moskowitz spectrum multiplied by a factor that accentuates the peak of the spectrum: 

  (24) 

δ = "stdv"
"mean"

=
"mean square"− "squared mean"

"mean"

=
λ2 λ0 − λ1 λ0( )2

λ1 λ0

= λ0λ2

λ1
2 −1

αm = λm

λ0λ2m

α1 =
1
1+δ 2

α 2 =
λ2
λ0λ4

Sη (ω ) =
α ⋅g2

ω 5 ⋅exp −β ⋅ ω 0

ω
⎛
⎝⎜

⎞
⎠⎟
4⎛

⎝⎜
⎞

⎠⎟

Sη (ω ) =
A
ω 5 ⋅e

− B
ω 4

Sη (ω ) =
α ⋅g2

ω 5 ⋅exp − 5
4
⋅
ω p

ω
⎛
⎝⎜

⎞
⎠⎟

4⎛

⎝
⎜

⎞

⎠
⎟ ⋅γ

r
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where  

  (25) 

Table 1: Parameters in the P-M, ISSC, B-M, and ITTC spectra. 

 A B 

P-M 
  

ISSC   

B-M   

ITTC   

 

Amplitude and Phase Spectra 
To be written. 

Derivative Processes 
Time-derivatives of a stochastic process appear as physical quantities, such as velocity 
and acceleration, in differential equations, and also as auxiliary quantities in the study of 
response statistics. Consider the first-order derivative of the process X(t): 

  (26) 

In a finite difference or Riemann sense, this derivative is equal to the limit 

  (27) 

For convenience, the argument in Eq. (27) is defined as 

  (28) 

As a result, the mean of the derivative process is 

  (29) 

r = exp −
(ω −ω p )

2

2 ⋅σ 2 ⋅ω p
2

⎛

⎝⎜
⎞

⎠⎟

ω z
4 ⋅Hs

2

4 ⋅π
ω z

4

π

0.11⋅ω 01
4 ⋅Hs

2 0.44 ⋅ω 01
4

1
2π

⋅ 0.257 ⋅H1/3
2 ⋅T1/3 ⋅

2π
T1/3

⎛
⎝⎜

⎞
⎠⎟

5⎛

⎝
⎜

⎞

⎠
⎟ 1.03⋅ 2π

T1/3

⎛
⎝⎜

⎞
⎠⎟

4

8.1⋅10−3 ⋅g2 3.11
Hs

2

 
!X(t) = dX(t)

dt

 
!X(t) = lim

h→0

X(t + h)− X(t)
h

Y (t,h) ≡ X(t + h)− X(t)
h

 

µ !X (t) = limh→0 E Y (t,h)[ ] = lim
h→0

E X(t + h)− X(t)
h

⎡
⎣⎢

⎤
⎦⎥

= lim
h→0

E µX (t + h)− µX (t)
h

⎡
⎣⎢

⎤
⎦⎥
= dµX (t)

dt
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which says that the “mean of the derivative is the derivative of the mean.” Similarly, the 
cross-correlation function between X(t) and  is: 

  (30) 

and the autocorrelation function for  is: 

 (31) 

where the last equality is the finite difference definition of a two-variable derivative. For 
second-moment stationary processes only one argument is necessary, denoted t =|t1–t2|. 
Adopting the earlier notation, this gives 

  (32) 

  (33) 

For second-moment stationary processes, RXX(t) is symmetric, which means its derivative 
at t=0 vanishes. According to Eq. (32), this means that , which in turn means 
that X(t) and  are uncorrelated at any given time instant. Derivative processes can 
also be analyzed in the frequency domain. Assuming a solution on the form 

  (34) 

the derivative is  

  (35) 

In other words, iw is the transfer function between the “input” process X(t) and the 
“output” process . As shown in the document on stochastic dynamics, where another 

 
!X(t)

 

φX !X (t1,t2 ) = limh→0 E X(t1) ⋅Y (t2,h)[ ] = lim
h→0

E X(t1) ⋅
X(t2 + h)− X(t2 )

h
⎡
⎣⎢

⎤
⎦⎥

= lim
h→0

E φXX (t1,t2 + h)−φXX (t2 )
h

⎡
⎣⎢

⎤
⎦⎥
= dφXX (t1,t2 )

dt2

 
!X(t)

 

φ !X !X (t) = limh1→0
h2→0

E Y (t1,h1) ⋅Y (t2,h2 )[ ]

= lim
h1→0
h2→0

E X(t1 + h1)− X(t1)
h1

⋅ X(t2 + h2 )− X(t2 )
h2

⎡

⎣
⎢

⎤

⎦
⎥

= lim
h1→0
h2→0

E X(t1 + h1)X(t2 + h2 )− X(t2 + h2 )X(t1)− X(t1 + h1)X(t2 )+ X(t1)X(t2 )
h1h2

⎡

⎣
⎢

⎤

⎦
⎥

= lim
h1→0
h2→0

φXX (t1 + h1,t2 + h2 )−φXX (t2 + h2,t1)−φXX (t1 + h1,t2 )+φXX (t1,t2 )
h1h2

⎛
⎝⎜

⎞
⎠⎟

= ∂2φXX (t1,t2 )
∂t1 ∂t2

 
RX !X (τ ) =

dRXX (t1 − t2 )
dt2

= − dRXX (τ )
dτ

 
R !X !X (τ ) =

∂2RXX (t1 − t2 )
∂t1 ∂t2

= − ∂2RXX (τ )
∂τ 2

 RX !X (0) = 0

 
!X(t)

X(t) = eiωt

 
!X(t) = iω ⋅eiωt

 
!X(t)
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system than “output is time-derivative of input” is considered, the output spectrum is the 
modulus of the transfer function, squared, times the input spectrum, which here means 
that: 

  (36) 

This is the reason why  

  (37) 

and 

  (38) 

in addition to the fact that  

  (39) 

Gaussian Processes 
A process is Gaussian when the random variable X(t) is normally distributed for all t. In 
the same way as the probability distribution of a Gaussian, i.e., normal random variable is 
fully described by the mean and standard deviation, a Gaussian stochastic process is fully 
described by the mean function and autocorrelation/autocovariance function. In addition 
to this major convenience, Gaussian stochastic processes are also popular because there is 
often insufficient data to justify another distribution type.  

Generation of Realizations 
One simple technique for creating realizations of a continuous stochastic process is to 
create it as a sum of trigonometric functions: 

  (40) 

where Ai and Bi are random variables with properties to be determined shortly In 
preparation for this, the frequency axis of the PSD is discretized into N intervals of length 
Dw. The centre frequency in each interval is denoted wi. To determine the value of the 
coefficients Ai and Bi corresponding to that frequency, first consider the autocovariance 
function from Eq. (14) expressed in terms of the discretized one-sided PSD: 

  (41) 

As shown in Eq. (15), the variance of the process equals the autocovariance function 
evaluated at t=0, hence Eq. (41) reveals the variance at each frequency: 

   (42) 

 S !X (ω ) =ω
2 ⋅SX (ω )

 λ2 =σ !X
2

 λ4 =σ !!X
2

λ0 =σ X
2

x(t) = Ai ⋅cos(ω it)+ Bi ⋅sin(ω it)( )
i=1

N

∑

CXX (τ ) = SX
+ (ω ) ⋅cos(ωτ )dω

0

∞

∫ = SX
+ (ω i ) ⋅ Δω ⋅cos(ω iτ )( )

i=1

N

∑

CXX (0) = SX
+ (ω i ) ⋅ Δω( )

i=1

N

∑
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In short,  is the variance at the frequency wi. The objective now is to ensure 
that the generated process in Eq. (40) has that same variance at each frequency. Because 
Eq. (40) is a linear function of random variables its variance is 

  (43) 

By selecting Var[Ai]=Var[Bi]= , where  is the variance at frequency number i, Eq. 
(43) yields 

  (44) 

Comparing Eq. (44) and Eq. (42) it is clear that the random variables Ai and Bi should be 
generated to have equal variances equal to . Often their means are selected to 
be zero, to generate a zero-mean process, but a non-zero constant mean function equal to 
µ is obtained by generating random variables Ai and Bi with the same mean µ. The 
distribution type of the random variables is usually selected to be normal because given 
the linear form of Eq. (40) this implies that the amplitude of the process at any time 
instant is also normal, i.e., it is a Gaussian process. 

Another approach for generating realizations of a continuous stochastic process is 

  (45) 

where ci is the amplitude and fi is the phase angle associated with each frequency wi. 
This formulation requires the amplitude spectrum and the phase spectrum, which will be 
described in an upcoming version of this document.  

Statistical Inference 
Given an observed realization of an ergodic stochastic process, an estimate of its mean is: 

  (46) 

The estimate of the autocorrelation function is 

  (47) 
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