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Bayesian Network Models  
A Bayesian network is essentially a collection of discrete random variables. As an 
introduction it may be useful think of each random variable as a component, or “node,” in 
a physical network, such as a bridge in a road network. The realizations of each random 
variable represent possible states of the corresponding component, such as “open” and 
“closed.” Importantly, the probability mass function (PMF) of most of the random 
variables in a Bayesian network is dependent on the realization of “parent” random 
variables in the network. As a result, a central part of Bayesian network modelling is to 
establish conditional PMFs of the form p(xi|xj,xk,…), where Xi is the “child node” and Xj, 
Xk,… are “parent nodes.” As an example of this dependence structure, consider the 
Bayesian network in Figure 1. This representation is called a “directed acyclic graph” 
(DAG), where each random variable, i.e., node, is drawn as a circle. Arrows are drawn 
from parent nodes to child nodes to visualize the dependence structure. In this particular 
example it is seen that the nodes X1 and X2 do not have parent nodes, while X3 is a child 
node that has both X1 and X2 as parent nodes. Therefore, the PMF for X3 is of the form 
p(x3|x1,x2). Figure 1 also shows that X4 has X1 as parent node, and X5 has X4 as parent 
node. As a result, the joint PMF for all the random variables is, according to the 
multiplication rule of probability: 

  (1) 

This result is important because a Bayesian network is essentially a tool to establish the 
joint probability distribution for a collection of random variables. Once this result is 
obtained, the probability of any system state can be computed by summation of 
probabilities, i.e., summation of the right-hand side in Eq. (1) in accordance with the 
theorem of total probability. In fact, the use of conditional PMFs visualized in Figure 1 
has reduced the number of probability values from m5-1 in the left-hand side of Eq. (1) to 
m2+m2+m3+m+m-5, i.e., far less, in the right-hand side of Eq. (1), where m is the number 
of possible outcomes of each random variables. The Bayesian network formulation also 
makes it straightforward to incorporate new information about individual components. 
For example, if it becomes known that a bridge is closed then the uncertainty in that node 
is removed and replaced by the known outcome. In this way, the network model is 
readily updated with real-time information, for example in the aftermath of an 
earthquake.  

 
Figure 1: Bayesian network. 
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