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Bayesian Hierarchical Models 
In Bayesian inference, model parameters, q, are considered as random variables, and their 
probability distribution is sought. In hierarchical models, several “layers” of model 
parameters, q1,q2,…,qh,…,qH, are present. Importantly, there exists dependence between 
these parameter groups in the sense that the probability distribution for qh depends on the 
outcomes of qh+1. As a result of this dependence structure, the joint distribution for all 
intervening parameters, including the measurable random variables, X, is written: 

  (1) 

where the parameters qh, for h>1, are called hyperparameters. It is understood that 
conditional probabilities in terms of hyperparameters, specifically f(qh|qh+1), form an 
important ingredient in this modelling approach. In fact, Bayesian hierarchical models is 
the continuous version of Bayesian networks, which are usually formulated in term of 
discrete random variables. In this document, the ultimate objective is the same as in 
ordinary Bayesian inference: to determine the probability distribution of the model 
parameters given observations of the measurable random variable(s), X. That is, the 
probability distributions f(qh|x) are ultimately sought. To understand how such results are 
obtained, consider the derivation of ordinary Bayesian updating, which starts with the 
conditional rule of probability applied to random variables: 

  (2) 

By substitution of the multiplication rule of probability Eq. (2) turns into: 

  (3) 

Furthermore, Eq. (3) is usually reformulated in terms of the likelihood function, to avoid 
having to interpret the numerator in Eq. (3) as a probability, but rather as proportional to 
the probability of observing the observations, which leads to the traditional Bayesian 
form of Eq. (3): 

  (4) 

It is recalled that the denominator in Eqs. (2), (3), (4) requires integration over the model 
parameters, which will be reiterated shortly. To understand the hierarchical Bayes 
approach it is now useful to return to Eq. (2), which in the presence of the model 
parameters q1, q2, … qh, … qH  turns into 

  (5) 

Again it is noted that the denominator is obtained by a multi-fold integral, which in this 
case reads 

 f (x,θ1,θ2,,θH ) = f (x θ1) ⋅ f (θ1 θ2 ) ⋅ f (θ2 θ3) f (θH−1 θH ) ⋅ f (θH )

f (θ x) = f (x,θ )
f (x)

f (θ x) = f (x θ )
f (x)

⋅ f (θ )

f (θ x) = L(x θ )
c

⋅ f (θ )

 
f (θ1,,θH x) = f (x, θ1,,θH )

f (x)
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  (6) 

While Eq. (5) is analogous to Eq. (2), it contains more information than the sought 
results, namely the distribution for only qh, i.e., f(qh|x). This result is obtained by 
“integrating out” the other q-variables from Eq. (5), which together with Eq. (6) then 
turns into: 

  (7) 

It is here emphasized that the integration in the denominator in Eq. (7) is over all model 
parameters, while the integration in the numerator is over all model parameters except qh. 
Next, it is of interest to rewrite Eq. (7) in a way that explicitly identifies the prior 
distribution, similar to the transition from Eq. (2) to Eq. (3). Mirroring the use of the 
multiplication rule in Eq. (3), Eq. (7) is re-written as: 

  (8) 

where c as usual serves to normalize the distribution: 

  (9) 

The likelihood function in Eq. (8) is: 

  (10) 

where the conditional distribution is obtained directly from the joint distribution in Eq. 
(1): 

  (11) 

The prior distribution in Eq. (8) is: 

  (12) 

where, from Eq. (1): 

  (13) 

 
f (x) =  f (x, θ1,,θH )dθ1,,dθH
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∞
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f (θh x) = f (x, θh )
f (x)

=
 f (x, θ1,,θH )dθ1,,dθh−1,dθh+1,,dθH

−∞

∞

∫
−∞

∞

∫

 f (x, θ1,,θH )dθ1,,dθH
−∞

∞

∫
−∞

∞

∫

f (θh x) =
L(x θh ) ⋅ f (θh )

c

c = L(x θh ) ⋅ f (θh )dθh
−∞

∞

∫

 

L(x θh ) =
f (x θ1)                                      for   h = 1

 f (x,θ1,,θh−1 θh )dθ1,,dθh−1
−∞

∞

∫
−∞

∞

∫    for   h = 2,  …,  H

⎧

⎨
⎪⎪

⎩
⎪
⎪

 f (x,θ1,,θh−1 θh ) = f (x θ1) ⋅ f (θ1 θ2 ) ⋅ f (θ2 θ3) f (θh−1 θh )

 

f (θh ) =
 f (θh ,,θH )dθh+1,,dθH

−∞

∞

∫
−∞

∞

∫         for   h = 1,  …,  H −1

f (θH )                                   for   h = H

⎧

⎨
⎪⎪

⎩
⎪
⎪

 f (θh ,,θH ) = f (θh θh+1) ⋅ f (θh+1 θh+2 ) f (θH )
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It is observed that both Eq. (7) and the rewritten version in Eq. (8) make use of the 
complete joint PDF in Eq. (1). However, the formulation in Eq. (8) is computationally 
advantageous because it splits large multi-fold integrals into smaller problems. An 
approach to further reduce the computational effort is to conduct the Bayesian updating 
in Eq. (8) conditional upon having done Bayesian updating at the previous level: 

  (14) 

where c as usual is the integral of the numerator. Once the analysis in Eq. (14) is carried 
out, the sought distribution is obtained by “integrating out” qh+1: 

  (15) 

The Bayesian updating in Eq. (14) is aided by the fact that qh+1 is fixed so that the 
likelihood function is independent of qh+1 and thus the same as in Eq. (10), while the 
prior is one link in the joint PDF in Eq. (1). 

f (θh x,θh+1) =
L(x θh ,θh+1) ⋅ f (θh θh+1)

c

f (θh x) = f (θh x,θh+1) ⋅ f (θh+1 x)dθh+1
−∞

∞

∫


